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a b s t r a c t 

Spectral unmixing of hyperspectral images aims to find the proportion of constituent ma- 

terials in mixed pixels. The total variation (TV) regularization is widely included in classical 

sparse regression formulations to exploit the spatial information in hyperspectral data. It 

promotes piecewise constant transitions in the fractional abundance of the same endmem- 

ber among neighboring pixels. The TV regularization term, however, usually brings some 

staircase effects. To alleviate this drawback, we propose a bilateral filter based TV regular- 

ization for hyperspectral image unmixing. Then we present an unmixing model that com- 

bines a data-fidelity term, a sparsity regularization term, and the new regularization term. 

To solve the proposed model, we design an algorithm called sparse unmixing via variable 

splitting augmented Lagrangian and bilateral filter based T V (SUnSAL-BF-T V), under the 

alternating direction method of multipliers (ADMM) framework. Our experimental results 

show that our algorithm is effective to unmix both simulated and real hyperspectral data 

sets. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Spectral unmixing aims to find the proportion of constituent materials in a mixed pixel in hyperspectral images (HSIs)

[1] . The linear mixture model (LMM) is widely adopted for the spectral unmixing problem due to its flexibility and tractabil-

ity. It assumes that each mixed pixel can be expressed as a linear combination of endmembers with corresponding abun-

dances [2–4] . Due to physical background, these abundances often satisfy the abundance nonnegativity constraint (ANC) and

the abundance sum-to-one constraint (ASC) [5] . 

Sparse unmixing algorithms characterize the mixed pixels by finding the optimal subset of signatures from a (potentially

very large) spectral library [6–9] . The classic sparse unmixing assumes that each mixed pixel is composed of few endmem-

bers, and thus the resulting abundance vector is sparse. Commonly, an � 1 regularization is employed to promote the sparsity

character [6,7,10–13] . Other sparsity-based regularizers are adopted to further encourage the sparseness and improve the un-

mixing performance [8,14–16] . Also, iteratively reweighted strategies have been incorporated into sparse unmixing to obtain

better performance [9,17–19] . 

Exploiting spatial information of hyperspectral data becomes another efficient way to improve the unmixing performance

[16,19–24] . Specifically, the total variation (TV) spatial regularization is included in spectral unmixing to promote that neigh-
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boring pixels have both similar mixing materials and similar fractional abundances [14,21,22,25–29] . This assumption is

rather strict and commonly causes some staircase effects. The collaborative sparse regression for the hyperspectral unmix-

ing problem enforces that all the pixels in some scene share the same support set of materials but do not necessarily have

similar abundance for each material [15,19,25,30] . Thus, the collaborative sparsity is less strict than the TV regularization.

Recently, the low-rank representation has become a powerful tool for studying spatial information of HSIs [19,23,24,31–35] .

Consider that the homogeneous regions of HSIs exist a high degree of correlation among the spectral signatures of neigh-

boring pixels. Then the correlation is reflected as linear dependence of their corresponding abundance vectors and leads to

a low-rank abundance matrix [19,23,24] . In addition, the nonlocal means method, as a spatial regularizer, is used to exploit

the nonlocal spatial information in the abundance map [36] . More recently, the centralized collaborative sparse unmixing

has coupled collaborative sparse unmixing and abundance estimation error reduction together [37] . And a robust sparse

unmixing adopts an � 2,1 norm loss function, which is robust for noises and outliers [38] . That said, incorporating spatial

information improves the abundance estimation accuracy. 

In this paper, we propose to include the bilateral filter into the TV regularization framework for the hyperspectral im-

age unmixing problem. Recall that the TV regularization is employed on each abundance map and so promotes piecewise

smooth transitions in these abundance maps, which usually brings some staircase effects. To address this drawback, we

propose a bilateral filter based TV regularizer for hyperspectral image unmixing. That is, we first apply the bilateral filter

to each abundance map such that the bilateral filtered abundance maps are more smooth while preserving sharp edges. It

follows that the piecewise constant transitions character in the bilateral filtered abundance maps is more prominent than

that in the original abundance maps (we will show a simple example in Section 2.2 ). Then we impose the TV regularizer

on these bilateral filtered abundance maps. That said, we want to improve the unmixing performance by imposing the TV

regularizer on bilateral filtered abundance maps, rather than directly on the abundance maps themselves, commonly as in

[14,21,22] and so on. Following this line, we present a model that combines the bilateral filter based TV term, the spar-

sity regularization term, and the data-fidelity term. And to solve the proposed model, we design an algorithm called sparse

unmixing via variable splitting augmented Lagrangian and bilateral filter based T V (SUnSAL-BF-T V), under the alternating

direction method of multipliers (ADMM) framework. Our experimental results will show that the proposed algorithm pro-

vides better unmixing performance for both simulated and real hyperspectral data sets, in comparison with several popular

hyperspectral unmixing algorithms. 

The main contributions of this paper could be summarized as follows. 

(1) We propose a bilateral filter based TV regularizer to relax the piecewise constant transitions assumption of the TV

regularization for the hyperspectral unmixing problem. The new regularizer alleviates the staircase effects caused by

the TV term. 

(2) We propose a hyperspectral unmixing model that combines a data-fidelity term, an � 1 -norm-based sparse regulariza-

tion term, and a bilateral filter based TV regularization term. Also, a reweighted matrix is used to further promote

the sparseness of the abundance. 

(3) To solve the proposed model, we design an algorithm called SUnSAL-BF-TV under the ADMM framework. Numerical

experiments show the effectiveness of the proposed algorithm on both simulated and real hyperspectral data. 

The remainder of this paper is organized as follows. Section 2 describes the problem formulation for the hyperspectral

image unmixing and briefly reviews the bilateral filter. Section 3 presents the proposed model and corresponding sparse

unmixing algorithm. The effectiveness of the proposed algorithm is demonstrated on both simulated hyperspectral data sets

in Section 4 and real data in Section 5 . Finally, Section 6 concludes with some remarks. 

2. Background 

2.1. Problem formulation 

Let Y ∈ R 

L ×n be the hyperspectral image with L bands and n pixels. Let A ∈ R 

L ×m be the spectral library with the j th col-

umn being the spectral signature of the j th endmember, for j = 1 , . . . , m, and X ∈ R 

m ×n is the fractional abundance matrix.

Then the LMM assumes 

Y = AX + N , 

where N ∈ R 

L ×n is an independent and identically distributed (i.i.d.) zero-mean Gaussian noise matrix. Commonly, the ANC,

i.e., X ≥ 0 , and the ASC, i.e., 1 T X = 1 , are imposed on X based on physically meaning. Here, the inequality X ≥ 0 is considered

entrywise nonnegative and 1 is a column vector of 1s. Similarly, as in [15,21,24] , we relax the ASC to focus on exploiting

the sparseness of the fractional abundances. 

Sparse unmixing assumes that each mixed pixel in an HSI is a linear combination of a few of endmembers, with a known

large spectral library A [6] . Then the sparse unmixing is to solve an optimization problem 

min 

X 

1 

2 

‖ 

AX − Y ‖ 

2 
F + λ‖ 

X ‖ 0 , s . t . X ≥ 0 , 

where ‖ · ‖ F is the Frobenius norm, ‖ X ‖ 0 is the � 0 norm of X , and λ≥ 0 is a regularization parameter. Due to the non-convex

character of the � term, this problem is NP-hard and difficult to solve. One popular solution is to relax the � norm with
0 0 
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Fig. 1. The effectiveness of coupling the bilateral filtering with the difference operator. (a) True abundance map X . (b) BF ( X ). (c) D ( X ). (d) D ( BF ( X )). In this 

example, D ( BF ( X )) is more sparse than D ( X ). Thus, we hope to improve the unmixing performance by imposing TV term on BF ( X ) instead of on X . 

 

 

 

 

 

 

 

 

 

 

the � 1 norm. Then the following optimization problem is obtained in [6] : 

min 

X 

1 

2 

‖ 

AX − Y ‖ 

2 
F + λ‖ 

X ‖ 1 , 1 , s . t . X ≥ 0 , 

where ‖ X ‖ 1 , 1 = 

∑ m 

i =1 

∑ n 
j=1 | x i, j | with x i,j being the ( i, j )th entry of X . 

In order to improve the unmixing performance, a TV regularizer is introduced to promote spatial homogeneity among

neighboring pixels [21] . The resulting optimization model is 

min 

X 

1 

2 

‖ 

AX − Y ‖ 

2 
F + λ‖ 

X ‖ 1 , 1 + λT V TV (X ) , s . t . X ≥ 0 , 

where λ≥ 0 and λTV ≥ 0 are regularization parameters, 

TV (X ) ≡ ‖ HX ‖ 1 , 1 , (1) 

and H is defined by 

HX ≡
[

H h X 

H v X 

]
. 

Here, H h ( H v , respectively): R 

m ×n → R 

m ×n is a linear operator computing the horizontal (vertical, respectively) difference 

between the components of X corresponding to neighboring pixels. Especially, the boundary condition is assumed as being

periodic; see also [39,40] . 

2.2. Bilateral filter 

Before introducing a new regularizer based on the bilateral filter and TV, we first briefly review the bilateral filter. It

is well-known that the bilateral filter can smooth images while preserving edges by means of non-linear combination of

nearby values [41,42] . The bilateral filter, denoted by BF ( · ), is defined by: 

BF (I) p = 

1 

W p 

∑ 

q ∈ S 
G σs 

( ‖ 

p − q ‖ 

)G σr 
(| I p − I q | ) I q . (2) 

Here I denotes the input image, I p is the image value at pixel position p , S is the spatial domain, and �q ∈ S denotes a sum

over all image pixels indexed by q . G σ ( x ) denotes the 2-D Gaussian kernel: 

G σ (x ) = 

1 

2 πσ 2 
exp 

(
− x 2 

2 σ 2 

)
, 

where σ is a parameter defining the neighborhood size. Here σ s and σ r are spatial and range parameters for the spatial

Gaussian weighting G σs and the range Gaussian weighting G σr , respectively. And ‖ p − q ‖ is the Euclidean distance between

pixel locations p and q . The normalization constant W p in (2) ensures all pixel weights sum to one: 

W p = 

∑ 

q ∈ S 
G σs 

( ‖ 

p − q ‖ 

)G σr 
(| I p − I q | ) . 

Clearly, the bilateral filter is a combination of spatial and range filters. 

We now give a simple example to visually show the effectiveness of the combination of bilateral filtering with TV. Note

that the TV regularizer promotes sparsity in the gradient domain. Fig. 1 (a) shows an original abundance map X ∈ R 

75 ×75 ,

which has been widely used for the hyperspectral image unmixing problem (see [14,19,21,43] ). Then, under periodic bound-

ary conditions, we define a difference operator D as 

(D (X )) i, j = | x i +1 , j − x i, j | + | x i, j+1 − x i, j | , 
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Fig. 2. Flowchart of the proposed unmixing algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where x i,j and ( D ( X )) i,j are the ( i, j )th entries of X and D ( X ), respectively. It is clear from (1) and the definition of D that 

TV (X ) = ‖ H X ‖ 1 , 1 = ‖ D (X ) ‖ 1 , 1 . 

Fig. 1 (b) and (c) show the result of bilateral filtering BF and the result of D after applying to X , denoted as BF ( X ) and D ( X ),

respectively. Finally, the result of the difference operator D on BF ( X ), i.e., D ( BF ( X )), is shown in Fig. 1 (d). 

From Fig. 1 (b), we see that the bilateral filter smoothes the image while maintaining the sharp boundaries as expected.

We can also see from Fig. 1 (c) and (d) that D ( BF ( X )) is more sparse than D ( X ). It is therefore hoped to improve the unmixing

performance by exploiting the sparsity of D ( BF ( X )). To this end, we propose to apply the TV term on BF ( X ) instead of on X

in the next section. 

3. Proposed model and algorithm 

For hyperspectral image unmixing, we now propose a bilateral filter based TV regularizer to further exploit the sparsity

in the gradient domain. In addition, we use a weighting � 1 regularization by adopting a weighting matrix W to further

enforce the sparsity of X , as in [19,24,44] . Then we carry out the sparse unmixing by solving the following optimization

problem: 

min 

X 

1 

2 

‖ 

AX − Y ‖ 

2 
F + λ‖ 

W � X ‖ 1 , 1 + λb f TV ( BF (X ) ) s . t . X ≥ 0 , (3)

where the denotation � represents the elementwise multiplication (i.e., Hadamard product) of the nonnegative weighing

matrix W and X , and λ≥ 0 and λbf ≥ 0 are regularization parameters. We note that the next weighting matrix is computed

from the value of the current solution. In the literature, this reweighting strategy has been widely used to promote the spar-

sity for � 1 -norm-based regularized problems [24,27,44] . We will specify the value of W in the following proposed algorithm.

Before that, we first give a flowchart of the proposed algorithm in Fig. 2 . As presented, we integrate the sparseness prior

and the spatial-contextual information for hyperspectral unmixing. Specifically, the bilateral filter is included in the classic

TV regularization to remove the staircase effects. 

We now solve the model in (3) . It is clear that all terms in the objective function are coupled together concerning X .

Thus, it is hard to obtain X directly. To address this drawback, we design an algorithm under the ADMM framework to

decompose the original problem into several smaller subproblems. For this purpose, we first rewrite (3) to be the following

equivalent constrained problem: 

min 

X , V i ,i =1 , ... , 6 

1 
2 ‖ 

V 1 − Y ‖ 

2 
F + λ‖ 

W � V 2 ‖ 1 , 1 + λb f ‖ 

V 5 ‖ 1 , 1 + ιR + ( V 6 ) , 

s . t . AX = V 1 , X = V 2 , X = V 3 , BF (V 3 ) = V 4 , HV 4 = V 5 , X = V 6 , 
(4)

where ι� is the indicator function of a set �, i.e., ι�(x ) = 0 if x ∈ � and ι�(x ) = + ∞ otherwise. We see a constraint in (4) :

BF (V ) = V , with the bilateral filter BF . Notice that the BF is a non-linear operator and so we temporarily use the KV to
3 4 3 
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linearly replace the BF ( V 3 ) such that we can design an algorithm under the ADMM framework. We will specify the matrix

K in the corresponding subproblems. Define 

G = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

A 

I 
I 
0 

0 

I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, V = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

V 1 

V 2 

V 3 

V 4 

V 5 

V 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−I 0 0 0 0 0 

0 −I 0 0 0 0 

0 0 −I 0 0 0 

0 0 K −I 0 0 

0 0 0 H −I 0 

0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

where I is the identity matrix. Let 

g(V ) = 

1 

2 

‖ V 1 − Y ‖ 

2 
F + λ‖ W � V 2 ‖ 1 , 1 + λb f ‖ V 5 ‖ 1 , 1 + ιR + (V 6 ) . 

Then we obtain the optimization problem: 

min 

X , V 
g(V ) s . t . GX + BV = 0 . (5) 

Introducing Lagrange multipliers D = [ D 

T 
1 
, D 

T 
2 
, D 

T 
3 
, D 

T 
4 
, D 

T 
5 
, D 

T 
6 

] T and define 

L (X , V , D ) = g(V ) + 

μ

2 

‖ 

GX + BV − D ‖ 

2 
F , 

where μ> 0 is a penalty parameter. We minimize L (X , V , D ) with respect to X and V and update D under the ADMM

framework ⎧ ⎪ ⎨ 

⎪ ⎩ 

X 

(k +1) = argmin 

X 

L (X , V 

(k ) , D 

(k ) ) 

V 

(k +1) = argmin 

V 

L (X 

(k +1) , V , D 

(k ) ) 

D 

(k +1) = D 

(k ) − GX 

(k +1) − BV 

(k +1) 

, (6) 

until some stopping criterion is satisfied. 

For (6) , we first compute X by solving the optimization problem 

min 

X 

∥∥AX − V 

(k ) 
1 

− D 

(k ) 
1 

∥∥2 

F 
+ 

∥∥X − V 

(k ) 
2 

− D 

(k ) 
2 

∥∥2 

F 
+ 

∥∥X − V 

(k ) 
3 

− D 

(k ) 
3 

∥∥2 

F 
+ 

∥∥X − V 

(k ) 
6 

− D 

(k ) 
6 

∥∥2 

F 
. 

It is easy to obtain that 

X 

(k +1) = (A 

T A + 3 I ) −1 (A 

T (V 

(k ) 
1 

+ D 

(k ) 
1 

) + V 

(k ) 
2 

+ D 

(k ) 
2 

+ V 

(k ) 
3 

+ D 

(k ) 
3 

+ V 

(k ) 
6 

+ D 

(k ) 
6 

) , 

where A 

T represents the transpose of A . 

For the V subproblem in (6) , we decouple it to 6 subproblems with respect to V i , for i = 1 , . . . , 6 . For V 1 , it is to solve

the optimization problem 

min 

V 1 

1 

2 

‖ 

V 1 − Y ‖ 

2 
F + 

μ

2 

∥∥AX 

(k +1) − V 1 − D 

(k ) 
1 

∥∥2 

F 
. 

It clearly follows that 

V 

(k +1) 
1 

= 

1 

1 + μ

(
Y + μ( AX 

(k +1) − D 

(k ) 
1 

) 
)
. 

Then V 

(k +1) 
2 

is computed by solving the optimization problem 

min 

V 2 
λ‖ 

W � V 2 ‖ 1 , 1 + 

μ

2 

∥∥X 

(k +1) − V 2 − D 

(k ) 
2 

∥∥2 

F 
. (7) 

Here we adopt a reweighting strategy for the weighting matrix W , similarly as in [17,19,24,44] . That is, the weights used for

the next iteration are obtained from the value of the current solution. In this spirit, with obtained X 

(k +1) and D 

(k ) 
2 

, define 

W 

(k ) 
i, j 

= 

1 ∣∣∣(X 

(k +1) − D 

(k ) 
2 

)
i, j 

∣∣∣ + ε
, 

where ε = 10 −16 is a small positive value to avoid singularities. Consider the “weighted” � 1 minimization problem: 

min 

V 2 
λ
∥∥W 

(k ) 
� V 2 

∥∥
1 , 1 

+ 

μ

2 

∥∥X 

(k +1) − V 2 − D 

(k ) 
2 

∥∥2 

F 
. (8) 

Clearly, the solution of (8) is 

V 

(k +1) 
2 

= soft (X 

(k +1) − D 

(k ) 
2 

, λμ W 

(k ) ) . 
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Here soft( · , · ) is a non-linear soft-thresholding operator defined component-wise by 

( soft(U , α) ) i, j = sign (U i, j ) max {| U i, j | − α, 0 } , 
for ∀ U ∈ R 

m ×n and α ≥ 0. 

The subproblem concerning V 3 is 

min 

V 3 

∥∥X 

(k +1) − V 3 − D 

(k ) 
3 

∥∥2 

F 
+ 

∥∥KV 3 − V 

(k ) 
4 

− D 

(k ) 
4 

∥∥2 

F 
. 

Here for computational convenience, we use the identity matrix I to replace the matrix K and obtain that 

min 

V 3 

∥∥X 

(k +1) − V 3 − D 

(k ) 
3 

∥∥2 

F 
+ 

∥∥V 3 − V 

(k ) 
4 

− D 

(k ) 
4 

∥∥2 

F 
. 

Then it is easy to get that 

V 

(k +1) 
3 

= 

1 

2 

(V 

(k ) 
4 

+ D 

(k ) 
4 

) + 

1 

2 

(X 

(k +1) − D 

(k ) 
3 

) . 

In order to compute V 4 , we solve the optimization problem 

min 

V 4 

∥∥KV 

(k +1) 
3 

− V 4 − D 

(k ) 
4 

∥∥2 

F 
+ 

∥∥HV 4 − V 

(k ) 
5 

− D 

(k ) 
5 

∥∥2 

F 
. 

Recall that we use the KV 3 to linearly replace the BF ( V 3 ) in (5) . Without this replacement, we also obtain a least-squares

problem 

min 

V 4 
‖ BF (V 

(k +1) 
3 

) − V 4 − D 

(k ) 
4 

‖ 

2 
F + ‖ HV 4 − V 

(k ) 
5 

− D 

(k ) 
5 

‖ 

2 
F . 

Then easily we have 

V 

(k +1) 
4 

= (I + H 

T H ) −1 
(
BF (V 

(k +1) 
3 

) − D 

(k ) 
4 

+ H 

T (V 

(k ) 
5 

+ D 

(k ) 
5 

) 
)
. 

For the V 5 subproblem, we have 

min 

V 5 
λb f ‖ 

V 5 ‖ 1 , 1 + 

μ

2 

∥∥HV 

(k +1) 
4 

− V 5 − D 

(k ) 
5 

∥∥2 

F 
. 

It follows that 

V 

(k +1) 
5 

= soft ( HV 

(k +1) 
4 

− D 

(k ) 
5 

, 
λb f 

μ
) . 

Then for V 6 , it is to solve the optimization problem: 

min 

V 6 
ιR + (V 6 ) + 

μ

2 

∥∥X 

(k +1) − V 6 − D 

(k ) 
6 

∥∥2 

F 
. 

Simple calculation shows that 

V 

(k +1) 
6 

= max (X 

(k +1) − D 

(k ) 
6 

, 0 ) . 

Finally, we update all Lagrange multipliers 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

D 

(k +1) 
1 

= D 

(k ) 
1 

− AX 

(k +1) + V 

(k +1) 
1 

D 

(k +1) 
2 

= D 

(k ) 
2 

− X 

(k +1) + V 

(k +1) 
2 

D 

(k +1) 
3 

= D 

(k ) 
3 

− X 

(k +1) + V 

(k +1) 
3 

D 

(k +1) 
4 

= D 

(k ) 
4 

− BF (V 

(k +1) 
3 

) + V 

(k +1) 
4 

D 

(k +1) 
5 

= D 

(k ) 
5 

− HV 

(k +1) 
4 

+ V 

(k +1) 
5 

D 

(k +1) 
6 

= D 

(k ) 
6 

− X 

(k +1) + V 

(k +1) 
6 

. 

To make it more clear, we summarize the proposed sparse hyperspectral image unmixing algorithm, denoted as SUnSAL-BF-

V, as follows ( Algorithm 1 ). 

We note that the SUnSAL-BF-TV algorithm is similar to SUnSAL-TV in [21] since both algorithms use the TV term and

the sparsity term as regularizers. The main difference between the two algorithms lies in a) the use of the bilateral filter,

i.e., the computation of V 

(k +1) 
3 

, V 

(k +1) 
4 

, D 

(k +1) 
3 

, and D 

(k +1) 
4 

and b) the use of the reweighting matrix W 

( k ) when computing

V 

(k +1) 
2 

. We will evaluate the effectiveness of both the bilateral filter and the reweighting matrix in Section 4 . 
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Algorithm 1 Pseudocode of the SUnSAL-BF-TV algorithm. 

Initialization: Choose V 

(0) 
i 

, D 

(0) 
i 

, for i = 1 , · · · , 6 , λ, λb f , μ, σs , and σr . 

Repeat: 

1) X 

(k +1) = (A 

T A + 3 I ) −1 
(
A 

T (V 

(k ) 
1 

+ D 

(k ) 
1 

) + V 

(k ) 
2 

+ D 

(k ) 
2 

+ V 

(k ) 
3 

+ D 

(k ) 
3 

+ V 

(k ) 
6 

+ D 

(k ) 
6 

)
2) V 

(k +1) 
1 

= 

1 
1+ μ

(
Y + μ( AX 

(k +1) − D 

(k ) 
1 

) 
)

3) W 

(k ) 
i, j 

= 

1 ∣∣∣∣
(

X (k +1) −D 
(k ) 
2 

)
i, j 

∣∣∣∣+ ε
for ε = 10 −16 

4) V 

(k +1) 
2 

= soft (X 

(k +1) − D 

(k ) 
2 

, λμ W 

(k ) ) 

5) V 

(k +1) 
3 

= 

1 
2 (V 

(k ) 
4 

+ D 

(k ) 
4 

) + 

1 
2 (X 

(k +1) − D 

(k ) 
3 

) 

6) V 

(k +1) 
4 

= (I + H 

T H ) −1 
(
BF (V 

(k +1) 
3 

) − D 

(k ) 
4 

+ H 

T (V 

(k ) 
5 

+ D 

(k ) 
5 

) 
)

7) V 

(k +1) 
5 

= soft ( HV 

(k +1) 
4 

− D 

(k ) 
5 

, 
λb f 

μ ) 

8) V 

(k +1) 
6 

= max (X 

(k +1) − D 

(k ) 
6 

, 0 ) 

Update Lagrange multipliers: 

9) D 

(k +1) 
1 

= D 

(k ) 
1 

− AX 

(k +1) + V 

(k +1) 
1 

10) D 

(k +1) 
2 

= D 

(k ) 
2 

− X 

(k +1) + V 

(k +1) 
2 

11) D 

(k +1) 
3 

= D 

(k ) 
3 

− X 

(k +1) + V 

(k +1) 
3 

12) D 

(k +1) 
4 

= D 

(k ) 
4 

− BF (V 

(k +1) 
3 

) + V 

(k +1) 
4 

13) D 

(k +1) 
5 

= D 

(k ) 
5 

− HV 

(k +1) 
4 

+ V 

(k +1) 
5 

14) D 

(k +1) 
6 

= D 

(k ) 
6 

− X 

(k +1) + V 

(k +1) 
6 

Until: some stopping criterion is satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experiments with synthetic data 

In this section, we indicate the effectiveness of the proposed unmixing algorithm SUnSAL-BF-TV on two simulated hy-

perspectral data sets. We will compare SUnSAL-BF-TV with four effective unmixing algorithms: SUnSAL [7] , CLSUnSAL [15] ,

ADSpLRU [24] , 1 and SUnSAL-TV [21] . 2 

For quantitative analysis, the signal-to-reconstruction error (SRE), measured in dB, is used to evaluate the unmixing

accuracy. It is defined by 

SRE (dB) = 10 log 10 

E [ ‖ 

X ‖ 

2 
F ] 

E [ ‖ X − ˆ X ‖ 

2 
F 
] 
, (9) 

where E denotes the expected value, ˆ X and X are the estimated and true abundances, respectively. Generally speaking,

the higher SRE values, the higher the quality of the unmixing results. To obtain the highest SREs, we select the optimal

parameter λ for SUnSAL and CLSUnSAL from the following sequence: {0.0 0 05, 0.0 01, 0.0 05, 0.01, 0.05, 0.5, 1, 5}. Similarly,

after empirical optimization, we search the optimal λ and λTV for SUnSAL-TV, λ and λbf for SUnSAL-BF-TV, and the sparse

parameter γ and the low-rank parameter τ for ADSpLRU, from the sequence 

{ 0 . 0 0 05 , 0 . 0 01 , 0 . 0 05 , 0 . 01 , 0 . 05 0 . 5 , 1 , 5 , 10 } . (10)

All possible combinations of the parameters in (10) are considered. We note that each of SUnSAL and CLSUnSAL has only one

regularization parameter, but each of SUnSAL-TV, ADSpLRU, and SUnSAL-BF-TV has two. Thus, choosing the best parameters

of SUnSAL-TV, ADSpLRU, and SUnSAL-BF-TV costs much more computational time than that of SUnSAL and CLSUnSAL. In

addition, we fix the spatial parameter σs = 18 and the range parameter σr = 0 . 005 for the bilateral filter in SUnSAL-BF-TV

and set the Lagrange parameter μ = 0 . 1 for all algorithms. For all the experiments, we stop the SUnSAL-BF-TV algorithm if ∥∥GX 

(k ) + BV 

(k ) 
∥∥

F 
≤ 5 × 10 

−5 

or the maximum iteration number reached 500. All the tests are performed by using MATLAB R2016a on the platform of

Windows 10 with 1.80 GHz Intel Core i5-3337U and 8GB memory. The floating-point precision is 10 −16 . 

4.1. Simulated data sets 

For the simulated data sets, we use the spectral library A ∈ R 

100 ×120 , which has been also used in [19,22,45,46] . It is

a subset of a library of 262 spectral signatures with 100 spectral bands generally found on satellites, from the National

Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Spacecraft Materials Spectral Database [47] . 
1 The MATLAB code of ADSpLRU is available at http://members.noa.gr/parisg/demo _ splr _ unmixing.zip . 
2 The MATLAB codes of SUnSAL, CLSUnSAL, and SUnSAL-TV are available at http://www.lx.it.pt/ ∼bioucas/publications.html . 

http://members.noa.gr/parisg/demo_splr_unmixing.zip
http://www.lx.it.pt/~bioucas/publications.html
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Fig. 3. True abundance maps of the endmembers in Data1. The first row: (from left to right) endmembers #1–#3. The second row: (from left to right) 

endmembers #4–#6. The last row: (from left to right) endmembers #7–#9. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Simulated Data Cube 1 (Data1): The first simulated data cube contains 100 × 100 pixels with 100 bands per pixel. We

generate the test data according to LMM by nine randomly selected signatures from A . Fig. 3 shows the true abundances 3

of the selected endmembers. After generating the data cube, we contaminate the simulated hyperspectral image by white

Gaussian noise for three levels of the signal-to-noise ratio (SNR): 20, 30, and 40 dB. 

2. Simulated Data Cube 2 (Data2): In the second data cube, we choose a simulated hyperspectral image of the Hubble Space

Telescope, similarly as in [22,45] . The data cube, of size 128 × 128 × 100, is a simulation of that collected by the U.S

Air Force AEOS Spectral Imaging Sensor (ASIS) [48] . Twelve signatures are randomly selected from A and then used to

generate the data according to LMM. The corresponding true fractional abundances 4 are shown in Fig. 4 . After the above

procedure, the simulated hyperspectral data is contaminated by Gaussian noise with the same SNR values adopted for

Data1. 

4.2. Comparisons of different unmixing algorithms 

We now show the effectiveness of SUnSAL-BF-TV in comparison with SUnSAL, CLSUnSAL, SUnSAL-TV, and ADSpLRU.

Table 1 lists the SRE (dB) values and the elapsed CPU time in seconds [denoted by Time (s)] achieved by different un-

mixing algorithms for Data1 and Data2 with SNR = 20, 30, and 40 dB. Optimal regularization parameters for the compared

algorithms are also provided in the parentheses. For further comparisons, Figs. 5 and 6 show the estimated abundance maps
3 http://www.lx.it.pt/ ∼bioucas/publications.html . 
4 http://www.escience.cn/people/miv/publication.html . 

http://www.lx.it.pt/~bioucas/publications.html
http://www.escience.cn/people/miv/publication.html
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Table 1 

SRE (dB) and Time (s) values achieved by different unmixing algorithms for Data1 and Data2. 

Data1 

SNR SUnSAL CLSUnSAL SUnSAL-TV ADSpLRU SUnSAL-BF-TV 

20dB SRE Time 2.05 76.67 ( λ = 0 . 05 ) 1.23 121.72( λ = 1 . 00 ) 5.98 350.01 ( λ = 0 . 01 , λTV = 0 . 01 ) 2.65 221.95 ( γ = 0 . 01 , τ = 5 ) 9.41 422.87 ( λ = 0 . 01 , λb f = 0 . 01 ) 

30dB SRE Time 8.12 58.97 ( λ = 0 . 05 ) 7.23 65.23 ( λ = 1 . 00 ) 12.87 351.92 ( λ = 0 . 01 , λTV = 0 . 005 ) 16.09 243.11 ( γ = 0 . 01 , τ = 1 ) 16.90 425.77 ( λ = 0 . 001 , λb f = 0 . 005 ) 

40dB SRE Time 11.04 57.99 ( λ = 0 . 01 ) 17.05 73.54 ( λ = 0 . 10 ) 20.23 264.21 ( λ = 0 . 005 , λTV = 0 . 001 ) 26.23 233.21 ( γ = 0 . 0 0 05 , τ = 0 . 5 ) 23.08 413.03 ( λ = 0 . 0 0 05 , λb f = 0 . 0 01 ) 

Data2 

SNR SUnSAL CLSUnSAL SUnSAL-TV ADSpLRU SUnSAL-BF-TV 

20dB SRE Time 3.32 121.72 ( λ = 0 . 01 ) 3.17 123.37 ( λ = 0 . 05 ) 7.41 391.01 ( λ = 0 . 01 , λTV = 0 . 005 ) 5.54 525.94 ( γ = 0 . 001 , τ = 5 ) 10.15 374.98 ( λ = 0 . 005 , λb f = 0 . 005 ) 

30dB SRE Time 11.55 123.75( λ = 0 . 005 ) 11.95 126.94 ( λ = 0 . 05 ) 16.98 440.19 ( λ = 0 . 01 , λTV = 0 . 001 ) 22.89 474.64 ( γ = 0 . 005 , τ = 0 . 5 ) 27.21 376.57 ( λ = 0 . 001 , λb f = 0 . 001 ) 

40dB SRE Time 21.98 122.35 ( λ = 0 . 005 ) 24.47 121.32( λ = 0 . 05 ) 25.07420.91 ( λ = 0 . 005 , λTV = 0 . 0 0 05 ) 36.01 511.48 ( γ = 0 . 001 , τ = 0 . 1 ) 40.38 426.29 ( λ = 0 . 001 , λb f = 0 . 001 ) 
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Fig. 4. True abundance maps of the endmembers in Data2. The first row: (from left to right) Endmembers #1–#4. The second row: (from left to right) 

Endmembers #5–#8. The last row: (from left to right) Endmembers #9–#12. 
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for endmembers #5 and #9 in Data1, respectively. Similarly for Data2, Figs. 7 and 8 show the estimated abundance maps for

endmembers #4 and #12, respectively. Other estimated abundance maps show similar behavior, so we omit here for space

considerations. 

Clearly, we see from Table 1 that SUnSAL-BF-TV provides higher SRE values than SUnSAL, CLSUnSAL, SUnSAL-TV, and

ADSpLRU for both data cubes except for one case (Data1 with SNR = 40 dB). For higher noise levels like SNR = 20 and

30 dB, both SUnSAL and CLSUnSAL, each of which has only one regularization term, provide much lower SRE values. For

SNR = 20 dB, ADSpLRU provides the lowest SRE values among the three unmixing algorithms having two regularization

terms. For SNR = 30 and 40 dB, however, ADSpLRU provides better results than SUnSAL-TV. Clearly, the proposed SUnSAL-

BF-TV algorithm provides higher or comparable SREs for both data cubes with all SNR levels. In particular, the improvement

of SUnSAL-BF-TV, in comparison to SUnSAL-TV, on SRE is more than 10 dB for Data2 with SNR of 30 and 40 dB. Also, for

the higher noise level of 20 dB, the improvement on SRE is greater than 2 dB for both data cubes. Besides, we see from

Table 1 that SUnSAL and CLSUnSAL are very fast. In comparison with SUnSAL-TV, SUnSAL-BF-TV costs more or comparable

computational time. It can be expected since we have used the bilateral filter at each iteration. 

From Figs. 5 and 6 , we see that for the lower noise level of SNR = 40 dB, all compared unmixing algorithms attain similar

abundance maps with the accurate spatial distribution. For SNR with 20 and 30 dB, however, SUnSAL-BF-TV gives smoother

background and better delineates high fractional abundance regions than the other four unmixing algorithms. In particular,

the abundance maps obtained by SUnSAL-TV for SNR = 20 and 30 dB show a clear staircase effect, whereas SUnSAL-BF-

V, as expected, addresses the staircase effect and provides satisfactory estimations. Similar conclusions can be obtained

for Data2 from Figs. 7 and 8 . In conclusion, for both data cubes, SUnSAL-BF-TV estimates the abundance maps with better

accuracy, which is significantly clear for higher noise levels of SNR = 20 and 30 dB. These observations are in line with those

already recorded in Table 1 . 

Furthermore, we show the ground-truth and estimated abundances of selected 100 adjacent pixels of Data1 with

SNR = 30 dB in Fig. 9 . We see from Fig. 9 that there are many low abundance values estimated by SUnSAL, CLSUnSAL, and

SUnSAL-TV that are not actually present in the abundance. ADSpLRU and SUnSAL-BF-TV provide more accurate estimated

abundances. However, the background by ADSpLRU is slightly less smooth than that by SUnSAL-BF-TV. Therefore, we con-

clude that the lines (denoting the abundance of a certain endmember in all pixels of the image) estimated by SUnSAL-BF-TV

are more similar to those in the ground-truth than the ones estimated by SUnSAL, CLSUnSAL, SUnSAL-TV, and ADSpLRU. 
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Fig. 5. Estimated abundance maps by different unmixing algorithms for endmember #5 in Data1 with different SNRs. 
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Fig. 6. Estimated abundance maps by different unmixing algorithms for endmember #9 in Data1 with different SNRs. 



346 X. Li, J. Huang and L.-J. Deng et al. / Information Sciences 504 (2019) 334–353 

Fig. 7. Estimated abundance maps by different unmixing algorithms for endmember #4 in Data2 with different SNRs. 
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Fig. 8. Estimated abundance maps by different unmixing algorithms for endmember #12 in Data2 with different SNRs. 
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Fig. 9. Ground-truth and estimated abundances for 100 selected adjacent pixels for Data1 with SNR = 30 dB by different unmixing algorithms. 

Fig. 10. Primal residual ‖ GX (k ) + BV (k ) ‖ F versus the iteration number k with SNR = 30 dB for different unmixing algorithms. 

 

 

 

 

Finally, Fig. 10 plots the primal residual, i.e., ‖ GX 

(k ) + BV 

(k ) ‖ F , versus the iteration number k by different unmixing algo-

rithms for both Data1 and Data2 with SNR = 30 dB. We see that SUnSAL-BF-TV attains the lowest primal residuals than the

other four compared unmixing algorithms. In addition, though there is no theoretical guarantee, SUnSAL-BF-TV, ADSpLRU,

and SUnSAL-TV numerically exhibit a robust convergence behavior for both data cubes. 

4.3. Parameter selections of SUnSAL-BF-TV 

In this subsection, we first show the role of parameters λ and λbf in SUnSAL-BF-TV and then study the robustness

of parameters μ, σ s , and σ r , similarly as in [49] . Finally, we investigate the effectiveness of the reweighting matrix W 

( k ) 

in (8) by comparing SUnSAL-BF-TV with/without adopting the reweighting matrix W 

( k ) with SUnSAL-TV. 
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Fig. 11. SRE (dB) as a function of parameters λ and λbf for (top row) Data1 and (bottom row) Data2 with different SNR levels. 

Fig. 12. SRE (dB) as a function of parameters (a) μ, (b) σ s , and (c) σ r for Data1 and Data2 with SNR = 30 dB. 

 

 

 

 

 

 

 

From the model in (3) , we see that the regularization parameters λ and λbf control the tradeoff between sparsity in the

abundance and sparsity in the gradient domain. In our experiments, we consider all possible combinations of λ and λbf in

the sequence (10) and select the optimal parameter values with respect to highest SRE values. Fig. 11 shows the obtained

SRE (dB) values as a function of λ and λbf for Data1 and Data2 with different noise levels. From Fig. 11 , we can see that

the optimal parameters of SUnSAL-BF-TV increase as the noise level becomes higher for both data sets. In addition, each

of λ and λbf plays an important role in abundance estimation. It shows the effectiveness of both the sparsity term and the

bilateral filter based TV term in (3) . Generally, for SUnSAL-BF-TV, optimal λbf is higher than or equal to optimal λ, which is

consistent with the quantitative observation from Table 1 . 
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Fig. 13. SRE (dB) results provided by different unmixing algorithms for Data1 with SNR = 20 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 shows the SRE(dB) values as a function of μ, σ s , and σ r for Data1 and Data2 with SNR = 30 dB. From this figure,

we can see that σ s and σ r are robust for each data set. However, we have to carefully choose the value of μ to obtain

better results, similarly as in SUnSAL-TV and ADSpLRU. With these observations, we fix μ = 0 . 1 , σs = 18 , and σr = 0 . 005 in

our experiments for both simulated and real data sets. 

Finally, we show the effectiveness of the reweighting matrix W 

( k ) in (8) . For this purpose, Fig. 13 plots the SRE values

against the iteration number for SUnSAL-BF-TV with and without the reweighting matrix for Data1 with SNR = 20 dB.

The curves of SUnSAL-TV are also provided for comparison. We can see from Fig. 13 that both SUnSAL-BF-TV with and

without the reweighting matrix W 

( k ) provide higher SRE values than SUnSAL-TV as iteration becomes stable. In addition, the

SUnSAL-BF-TV algorithm with the reweighting matrix W 

( k ) is clearly better than the algorithm without one. It thus shows

the effectiveness of the reweighting strategy, and also the effectiveness of the bilateral filter, in the proposed SUnSAL-BF-TV

algorithm. 

5. Experiment with real data 

In this experiment, we illustrate the performance of SUnSAL-BF-TV on the well-known Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) hyperspectral image of Cuprite. 5 We use a portion of 200 × 200 pixels with 188 spectral bands, which

corresponds to a subset of the sector labeled as f 970619 t01 p02 _ r02 _ { s } c03 .a.r f l in the online data; see [7,21] for more

details. The 188 × 240 spectral library matrix in this experiment is generated from the U.S. Geological Survey (USGS) spectral

library (splib06a), 6 which includes all exposed minerals of interest. Fig. 14 shows a mineral map produced in 1995 by

USGS, in which different minerals were mapped by a Tetracorder software product 7 [50] . Note that the detailed ground

truth information is unavailable, we just qualitatively compare the performance of different unmixing algorithms with the

minerals map by the Tetracorder 4.4 software product. 

Fig. 15 shows the estimated fractional abundances of three different materials: alunite, chalcedony , and muscovite , by

the Tetracorder 4.4 software product, SUnSAL, CLSUnSAL, SUnSAL-TV, ADSpLRU, and SUnSAL-BF-TV. Similarly as in [21] , the

regularization parameters, including λ for SUnSAL and CLSUnSAL and both λ and λTV for SUnSAL-TV, are set to 0.001. We

also set the regularization parameters γ = τ = 0 . 001 for ADSpLRU and the regularization parameters λ = λb f = 0 . 001 for

SUnSAL-BF-TV. And similarly as in simulated experiments, we set σs = 18 and σr = 0 . 005 for the bilateral filter. From Fig. 15 ,

we see that all five sparse unmixing algorithms produce similar abundance maps. We also see that SUnSAL-BF-TV gives

generally higher or comparable abundances in the regions classified as respective minerals in comparison with SUnSAL,

CLSUnSAL, SUnSAL-TV, and ADSpLRU. It shows that the SUnSAL-BF-TV algorithm is effective to unmix real hyperspectral
data. 

5 Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html . 
6 Available online: http://speclab.cr.usgs.gov/spectral.lib06 . 
7 Available online: https://speclab.cr.usgs.gov/PAPERS/tetracorder/ . 

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://speclab.cr.usgs.gov/spectral.lib06
https://speclab.cr.usgs.gov/PAPERS/tetracorder/
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Fig. 14. USGS map showing the location of different minerals in the Cuprite mining district in Nevada. The map is available online at http://speclab.cr.usgs. 

gov/cuprite95.tgif.2.2um _ map.gif . 

Fig. 15. Abundance maps estimated for three minerals: (from top row to bottom row) alunite, chalcedony , and muscovite , by Tetracorder 4.4 and different 

unmixing algorithms for the AVIRIS Cuprite scene. 

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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6. Conclusion 

In this paper, we have proposed a bilateral filter based TV spatial regularizer for sparse hyperspectral image unmixing.

The main idea is to enforce the TV term on the bilateral filtered abundance maps, rather than directly on the abundance

maps, to address the staircase effect of TV. In this vein, we promote the sparsity in the gradient domain as the bilateral

filter smoothes images while maintaining edges. Then we have presented a model that combines both the bilateral filter

based TV and sparsity regularization terms with the data-fidelity term. To solve the proposed model, we have designed

an algorithm called SUnSAL-BF-TV under the ADMM framework. Simulated experiments have shown that the SUnSAL-BF-

V algorithm provides higher or comparable SRE values and more accurate abundance estimations than several popular

unmixing algorithms. In addition, the proposed algorithm has shown to be effective to unmix real hyperspectral data. Finally,

applying a 3-D bilateral filter for hyperspectral unmixing is currently under investigation. 
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