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Bilateral Joint-Sparse Regression for Hyperspectral
Unmixing

Jie Huang, Wu-Chao Di, Jin-Ju Wang, Jie Lin and Ting-Zhu Huang

Abstract—Sparse hyperspectral unmixing has been a hot topic
in recent years. Joint sparsity assumes that each pixel in a small
neighborhood of hyperspectral images (HSIs) is composed of the
same endmembers, which results in a few nonzero rows in the
abundance matrix. Recall that a plethora of unmixing algorithms
transform a 3-D HSI into a 2-D matrix with vertical priority. The
transformation makes matrix computation easier. It is, however,
hard to maintain the horizontal spatial information in HSIs in
many cases. To make further use of the spatial information of
HSIs, in this article, we propose a bilateral joint-sparse structure
for hyperspectral unmixing in an attempt to exploit the local
joint sparsity of the abundance matrix in both the vertical and
horizontal directions. In particular, we introduce a permutation
matrix to realize the bilateral joint-sparse representation and
there is no need to construct the matrix explicitly. Moreover,
we propose to simultaneously impose the bilateral joint-sparse
structure and low rankness on the abundance and develop a new
algorithm named bilateral joint-sparse and low-rank unmixing.
The proposed algorithm is based on the alternating direction
method of multipliers (ADMM) framework and employs a
reweighting strategy. The convergence analysis of the proposed
algorithm is investigated. Simulated and real experiments show
the effectiveness of the proposed algorithm.

Index Terms—hyperspectral images, spectral unmixing, bilat-
eral joint-sparse, low-rank matrix, alternating direction method
of multipliers (ADMM), iterative reweighting.

I. INTRODUCTION

SPECTRAL unmixing of hyperspectral images (HSIs) has
attracted much attention in different scientific fields [1]–

[3]. It is the task of identifying the spectral signatures of
distinct materials (endmembers) and estimating the fractions
(abundances) of the materials for each pixel in HSI. The
mixing process can be characterized as either linear [1] or
nonlinear [4], [5]. In particular, bilinear mixture models have
been proposed and used more commonly in practice [6]–[8].
Linear mixture model (LMM) assumes that the measurement
spectrum of each pixel is a linear combination of the spectral
signatures of the endmembers [3]. Due to its simplicity and
tractability, we will adopt the LMM in spectral unmixing for
the remainder of this article. Commonly, the abundance vector
of a mixed pixel should satisfy the abundance nonnegative
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constraint (ANC) and the abundance sum-to-one constraint
(ASC) for physical meaning [9].

Nonnegative matrix factorization for spectral unmixing aims
to find two nonnegative matrices, one for an endmembers’
dictionary and another for fractional abundances, so that
their product is equal to the target HSI matrix [10]–[13].
Recently, nonnegative tensor factorization has been proposed
for hyperspectral unmixing to further exploit spatial informa-
tion of HSIs and improve the unmixing performance [14]–
[16]. With the available of the spectral dictionaries, sparse
unmixing provides an alternative way for spectral unmixing.
It assumes that, compared with large-scale dictionaries, only
a few of spectral signatures participate in the LMM of each
pixel, leading a sparse structure in the abundance matrix [17].
Diverse sparse structures have been exploited in the literature,
including the standard `1-norm regularization [17], the `2,1-
norm regularization [18], and their variants [10], [19]–[27].

Exploiting spatial information in HSIs significantly im-
proves the accuracy of spectral unmixing. Typically, the total
variation (TV) regularization imposes the piecewise smooth
on each abundance map [28]–[31]. It suppresses the noise and
generates smooth abundance maps with preserved edges. In
many cases, however, it is overstrict to assume that neighbor-
ing pixels have both similar mixing endmembers and similar
abundance fractions. The low-rank representation provides
another perspective of spatial correlation for spectral unmixing
[6], [32]–[34]. In this vein, the highly spatial correlation
of mixed pixels is transferred into the linear dependence
among their corresponding abundance vectors. Simultaneously
imposing the low-rank characteristic with sparsity has offered
stimulating results [32]. Moreover, it is shown that the unmix-
ing performance can be further improved by adopting a joint-
sparse-blocks structure in the low-rank representation based
unmixing [26]. In addition, nonlocal spatial information has
been utilized to improve the performance of abundance esti-
mation [35]–[40]. Broadly speaking, simultaneously exploiting
spatial information and sparsity provides an effective way for
spectral unmixing. Notice that most above-mentioned sparse
unmixing algorithms first transfer an HSI, a third-order tensor,
into a matrix, and then estimate the abundance matrix under
the LMM. Thus, spatial information of HSIs might be lost in
the transferring process [14]–[16], [41], [42].

In this article, we propose a bilateral joint-sparse regression
for hyperspectral unmixing to make further use of the spatial
information of HSIs. On the one hand, we consider a local joint
sparsity structure of the abundance matrix, which is obtained,
as usual, by arranging the HSI to be a matrix along the
vertical direction. On the other hand, we consider the local
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joint sparsity on a reshaped abundance matrix obtained by
arranging the HSI along a horizontal direction. In this case,
we utilize the spatial information along both the vertical and
horizontal directions in HSIs. In particular, we introduce a
permutation matrix to realize the bilateral joint-sparse repre-
sentation and there is no need to build this permutation matrix
explicitly. In addition, as previously stated, low rankness
is a natural character of the abundance matrix. Thus, we
propose to simultaneously impose the bilateral joint-sparse
structure and low rankness on abundance matrices. We then
develop an algorithm called bilateral joint-sparse and low-
rank unmixing (BiJSpLRU) under the alternating direction
method of multipliers (ADMM) framework combined with a
reweighting strategy. The convergence analysis of BiJSpLRU
is investigated. Simulated and real data experiments show
that the proposed algorithm outperforms other state-of-the-art
sparse unmixing algorithms.

The organization of this article is as follows. Section II
introduces a bilateral joint-sparse structure and derives a
BiJSpLRU algorithm with convergence results. Then, the
performance of the proposed algorithm is demonstrated by
both simulated experiments in Section III and a real-data
experiment in Section IV. Finally, concluding remarks are
given in Section V.

II. BIJSPLRU
In this section, we first briefly review several sparse unmix-

ing models and then propose a bilateral joint-sparse structure
and an unmixing model. After that we present an algorithm
to solve the proposed model and finally investigate the
convergence results of the proposed algorithm.

A. Sparse Unmixing Models

Let Y ∈ Rl×n be the observed data matrix with l bands
and n pixels and A ∈ Rl×m be the spectral dictionary with m
endmembers. The LMM assumes that

Y = AX + E (1)

where X ∈ Rm×n is the abundance matrix and E ∈ Rl×n is
an independent and identically distributed (i.i.d.) zero-mean
Gaussian noise matrix. Two physical constraints: ANC and
ASC, i.e.,

X ≥ 0, 1TX = 1T (2)

respectively, are often imposed on X [17]. Here we relax
the ASC due to the variability of the endmembers, similarly
as in [18], [28], [32], see more details in [17]. With large
and available spectral dictionaries, many sparse unmixing
algorithms have been well studied in the literature. Typically,
the sparse unmixing algorithm via variable splitting and aug-
mented Lagrangian (SUnSAL) [17] considers the following
model

min
X

1

2
‖Y− AX‖2F + λ‖X‖1

s.t. X ≥ 0
(3)

where λ ≥ 0, ‖X‖1 =
∑
i

∑
j |xij | is the `1-norm of X, and

xij is the (i, j)th element of X. Note that SUnSAL exploits

the sparsity in each abundance vector but the collaborative
SUnSAL (CLSUnSAL) [18] pays more attention to the joint
sparsity, or row sparsity, of the abundance matrix. The CLSUn-
SAL model is

min
X

1

2
‖Y− AX‖2F + λ‖X‖2,1

s.t. X ≥ 0
(4)

where ‖X‖2,1 =
∑
i

√∑
j |xij |

2 is the `2,1-norm of X.
In addition, many sparse regularization terms, such as the
weighted `1-norm, the `p-norm, and the `p,q-norm, are utilized
to enhance the sparsity of the abundance [19], [24], [25], [43],
[44].

Recently, low-rank unmixing algorithms have attracted more
and more attentions. The alternating direction sparse and low-
rank unmixing (ADSpLRU) algorithm [32] simultaneously
exploits sparsity and low rankness of the abundance, leading
to an unmixing model as

min
X

1

2
‖Y− AX‖2F + λ‖Z� X‖1 + τ‖X‖b,∗

s.t. X ≥ 0
(5)

where λ ≥ 0, τ ≥ 0, ‖Z � X‖1 =
∑
i,j zij |xij | is the

weighted `1-norm of X [43], ‖X‖b,∗ =
∑
i biσi(X) is the

weighted nuclear norm of X [45], σi(X) is the ith singular
values of X, Z = [zij ] is a nonnegative weighting matrix and
b = [b1, · · · , br] is a nonnegative weighting vector with r
being the rank of X.

Consider instead the local joint-sparsity, the joint-sparse-
blocks and low-rank unmixing (JSpBLRU) algorithm [26] first
partitions the abundance matrix as

X = [X1,X2, · · · ,Xs] (6)

and then imposes the joint sparsity on each column block
matrix Xj , where Xj ∈ Rm×dj with

∑s
j=1 dj = n. Thus, the

unmixing model becomes

min
X

1

2
‖Y− AX‖2F + λ

s∑
j=1

‖Xj‖wj ,2,1 + τ‖X‖b,∗

s.t. X ≥ 0

(7)

where

‖Xj‖wj ,2,1 =

m∑
i=1

wij‖X[i]
j ‖2 (8)

X[i]
j is the ith row of the jth block of X and wj =

[w1j , w2j , · · · , wmj ] is a nonnegative weighing vector com-
puted by using a reweighting strategy. It is shown in [26],
[32] that exploiting simultaneously sparsity and low rankness
provides a new sight on the abundance matrix and the struc-
tural sparsity has great potential to achieve better abundance
estimation results. In this vein, we aim to further exploit the
structural sparsity by utilizing the spatial information in the
HSI.

B. Bilateral Joint-Sparse Structure
We now introduce a bilateral joint-sparse structure for

hyperspectral unmixing. The key idea is to incorporate more



3

(a) Mode-1 fibers (b) Mode-2 fibers (c) Mode-3 fibers

Fig. 1: Fibers of a third-order tensor Y ∈ R3×4×2.

spatial information of HSIs into the structural sparsity. Recall
that the main task of many sparse unmixing algorithms is
to estimate the abundance of a reshaped HSI matrix Y as
in (1). That said, a 3-D HSI, also a third-order tensor, is first
transformed into a 2-D matrix and then one can estimate the
abundance matrix. In fact, in this vein, it is hard to make full
use of the spatial information of HSIs.

For example, consider a third-order tensor Y ∈ R3×4×2

in [41], where

Y1 =

 1 4 7 10
2 5 8 11
3 6 9 12

 ,Y2 =

 13 16 19 22
14 17 20 23
15 18 21 24

 (9)

are the two frontal slices of Y . Recall that the mode-n
unfolding of a tensor Y , denoted by Y(n), arranges the mode-
n fibers to be the columns of the resulting matrix. Here we
show the mode-n fibers of Y in Fig. 1. Then from [41], three
mode-n unfoldings of Y are

Y(1) =

 1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24



Y(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


Y(3) =

[
1 2 3 4 · · · 9 10 11 12
13 14 15 16 · · · 21 22 23 24

]
.

(10)

If we view Y as an HSI in hyperspectral unmixing, then
the task in [17], [18], [26], [28], [32], to name a few, is to
unmix the matrix Y(3). In this vein, to utilize the sparsity of
the abundance, SUnSAL and ADSpLRU consider the sparsity
of each abundance vector but JSpBLRU emphasizes the joint
sparsity of the neighboring abundance vectors. Observe that
the mode-3 unfolding Y(3) is obtained by arranging the mode-
3 fibers of Y , as in Fig. 1(c), to be the columns of Y(3). Par-
ticularly, the vertical direction gets priority over the horizontal
direction in the arrangement of the frontal slice Y1 (also for
Y2), see Fig. 2(a). It follows that the local joint sparsity on
the abundance matrix of Y(3) exploits the spatial information
only along the vertical direction of Y .

In attempt to further utilize the spatial information of the
HSI, we propose to consider the mode-3 matricization of Y
along the vertical and horizontal directions simultaneously. To
this end, besides the construction of Y(3) in (10) with vertical
priority, we construct another mode-3 unfolding of Y:

Y′(3) =
[

1 4 7 10 · · · 3 6 9 12
13 16 19 22 · · · 15 18 21 24

]
(11)

(a) Vertical priority (b) Horizontal priority

Fig. 2: Two ways of vectorization.

(a) Case 1

(b) Case 2

Fig. 3: Vertical and horizontal expansions of the pixels in
HSIs for hyperspectral unmixing. Note that there is no need
to construct the permutation matrix P ∈ R9×9 explicitly.

with horizontal priority as in Fig. 2(b). Then we can exploit
the local spatial information from both Y(3) and Y′(3).

Following the analysis, for hyperspectral unmixing, we
propose to impose the joint-sparse-blocks structure on the
abundance matrices of the mode-3 unfoldings along both the
vertical and horizontal directions and name it as a bilateral
joint-sparse structure. To see it more clearly, we show two
simple and extreme cases in Fig. 3. We consider nine pixels
in the sliding window. Case 1 has a clear spatial characteristic
along the horizontal direction and case 2 shows a vertical
characteristic. From Fig. 3 we see that vertical and horizontal
expansions have their respective advantages. In particular, we
can mathematically realize the bilateral matricization via a
permutation matrix. Partition the abundance matrix X of the
mode-3 unfolding of the pixels with vertical priority as

X = [X1,X2, · · · ,X9] (12)

where Xi is the ith column of X. Then the abundance matrix
with horizontal priority is obtained by permuting the columns
of X, that is,

XP = [X1,X4,X7,X2,X5,X8,X3,X6,X9] (13)
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where P ∈ R9×9 is a permutation matrix [46]. Note that we
can reshape the abundance matrix to do the permutation so
there is no need to construct the matrix P explicitly, which
is time-saving and easy to implement. Then we realize the
bilateral joint-sparse structure by simultaneously imposing the
joint-sparse-blocks structure on X and XP. In this vein, we
incorporate both the vertical and horizontal spatial information
of HSIs into the sparse structure of the abundance matrix.
In practical situations, utilizing bilateral spatial information
certainly provides an advantage over either vertical or hori-
zontal expansions, as will be demonstrated later in Sections III
and IV.

C. Proposed Model and BiJSpLRU Algorithm

Now we propose an unmixing model by considering both
the bilateral joint-sparse structure via the weighted `2,1-norm
and the low-rank character via the weighted nuclear norm.
Reconsider the LMM model in (1) and the abundance matrix
X ∈ Rm×n. Note that X is obtained corresponding to the
vertical expansion of the HSI. Let XP ∈ Rm×n be the
abundance matrix with respect to the horizontal expansion of
the HSI, where P ∈ Rn×n is the corresponding permutation
matrix. We impose the joint-sparse-blocks structure on both X
and XP. That is, we first partition X and XP as

X = [X1,X2, · · · ,Xs]
XP = [(XP)1, (XP)2, · · · , (XP)s]

(14)

where Xj and (XP)j ∈ Rm×dj are the jth column blocks of X
and XP, respectively, for

∑s
j=1 dj = n. We note that both X

and XP share the same partition strategy for model simplicity.
Then the proposed optimization problem is

min
X

1

2
‖Y− AX‖2F+λ1

s∑
j=1

‖(XP)j‖W1,j ,2,1

+λ2

s∑
j=1

‖Xj‖W2,j ,2,1 + τ‖X‖W3,∗

s.t. X ≥ 0

(15)

where λ1, λ2, and τ are nonnegative regularization parameters,
W1, W2, and W3 are nonnegative weighting matrices with

W1 = [W1,1, · · · ,W1,s] ∈ Rm×s

W2 = [W2,1, · · · ,W2,s] ∈ Rm×s
(16)

and W3 is a diagonal matrix of order m. Particularly,

‖(XP)j‖W1,j ,2,1 =

m∑
i=1

(W1)ij‖(XP)[i]j ‖2

‖Xj‖W2,j ,2,1 =

m∑
i=1

(W2)ij‖X
[i]
j ‖2

‖X‖W3,∗ =

m∑
i=1

(W3)iiσi(X)

(17)

where, for any matrix T, (T)ij is the (i, j)th element of T.
We will use a reweighting strategy to automatically update W1,
W2, and W3 at each iteration. Notice that the model in (15) has
three regularization parameters so it may be time-consuming

to choose optimal parameters in real applications. In our expe-
rience, λ1 and λ2 attain the same optimal regularization values
for many cases. Therefore for simplicity, we set λ1 = λ2 = λ
in (15) and the proposed model becomes

min
X

1

2
‖Y− AX‖2F+λ

s∑
j=1

‖(XP)j‖W1,j ,2,1

+λ

s∑
j=1

‖Xj‖W2,j ,2,1 + τ‖X‖W3,∗

s.t. X ≥ 0.

(18)

In the following, we show how to solve the proposed model
in (18) under the ADMM framework [47]. To this end, we first
introduce four variables V1, V2, V3, and V4. Partition V1 and
V2 as XP and X in (14), respectively,

V1 = [V1,1,V1,2, · · · ,V1,s]

V2 = [V2,1,V2,2, · · · ,V2,s] .
(19)

Then using variable replacement, we equivalently trans-
form (18) into the following model

min
X,V1,··· ,V4

1

2
‖Y− AX‖2F + λ

s∑
i=1

‖V1,j‖W1,j ,2,1

+λ

s∑
j=1

‖V2,j‖W2,j ,2,1
+ τ‖V3‖W3,∗ + ιR+(V4)

s.t. XP = V1, X = V2, X = V3, X = V4

(20)

where ιR+(x) is the indicator function, i.e., ιR+(x) = 0 if x
is nonnegative and ιR+(x) = +∞ otherwise. Let

f(X) =
1

2
‖Y− AX‖2F

g(V,W) = λ

s∑
j=1

‖V1,j‖W1,j ,2,1 + λ

s∑
j=1

‖V2,j‖W2,j ,2,1

+ τ‖V3‖W3,∗ + ιR+(V4)

(21)

and define

V = [V1,V2,V3,V4] ∈ Rm×4n

G = [P, I, I, I] ∈ Rn×4n

W = [W1,W2,W3] ∈ Rm×(2s+m)

(22)

where I is an n-by-n identity matrix. Clearly (20) becomes

min
X,V

f(X) + g(V,W)

s.t. XG = V.
(23)

We note that a reweighting strategy is employed to update W
in each iterate.

Define the augmented Lagrangian function

L(X,V,W,Λ) =f(X) + g(V,W)

+ 〈Λ,XG− V〉+ µ

2
‖XG− V‖2F

(24)

where Λ = [Λ1,Λ2,Λ3,Λ4] is the Lagrange multiplier,
µ > 0, and 〈R,T〉 = Tr(RTT) is the standard inner product
between matrices, where R,T ∈ Rn1×n2 . Partition X and XP



5

as in (14) and

Λ1 = [Λ1,1, · · · ,Λ1,s]

Λ2 = [Λ2,1, · · · ,Λ2,s].
(25)

Then the ADMM framework with a reweighting strategy is
derived

Xk+1 = argmin
X
L(X,Vk,Wk,Λk)

(Wk+1
1 )ij =

1

‖((Xk+1P)j + 1
µΛ

k
1,j)

[i]‖2 + ε

(Wk+1
2 )ij =

1

‖(Xk+1
j + 1

µΛ
k
2,j)

[i]‖2 + ε

(Wk+1
3 )ii =

1

σi(Xk+1 + 1
µΛ

k
3) + ε

Vk+1 = argmin
V
L(Xk+1,V,Wk+1,Λk)

Λk+1 = Λk + µ(Xk+1G− Vk+1)

(26)

for i = 1, . . . ,m, j = 1, . . . , s, where σi(Xk+1 + 1
µΛ

k
3) is

the ith singular value of Xk+1 + 1
µΛ

k
3 and ε = 10−16 is a

small constant added to avoid singularities. Now we solve each
subproblem.
• Update X. For X-subproblem, it is to solve

min
X

1

2
‖Y− AX‖2F + 〈Λk,XG− Vk〉+ µ

2
‖XG− Vk‖2F . (27)

Clearly, the optimality condition is

0 = AT (AXk+1 − Y) +ΛkGT + µ(Xk+1G− Vk)GT . (28)

Recall that P is a permutation matrix with PPT = I and so
GGT = 4I, then we have

Xk+1 = (ATA + 4µÎ)−1(ATY + (µVk −Λk)GT ) (29)

where Î is an m-by-m identity matrix.
• Update W. With obtained Xk+1, we update W1, W2,

and W3 as in (26), which will be used in the following V-
subproblem. We note that the weighting coefficients in W1

and W2 are computed, similarly as in [26], to enhance the row
sparsity of V1 and V2, respectively. The weighting coefficients
in W3 are used to enhance the sparsity of singular values of
V3, similarly as in [26], [32], [45], [48].
• Update V. Clearly, the minimization problem about V can

be decoupled and so we solve the Vi-subproblem, i = 1, . . . , 4,
separately.

◦ Update V1. For V1-subproblem, after dropping constant
terms, we obtain

min
V1

λ

s∑
j=1

‖V1,j‖Wk+1
1,j ,2,1

+ 〈Λk
1 ,−V1〉+

µ

2
‖Xk+1P− V1‖2F .

(30)
Partition XP, V1, and Λ1 as in (14), (19), and (25), respec-
tively. For each block of V1,j , we obtain

Vk+1
1,j

= argmin
V1,j

λ‖V1,j‖Wk+1
1,j ,2,1

+
µ

2
‖(Xk+1P)j − V1,j +

1

µ
Λk

1,j‖2F .

(31)

Define the vect-soft operator as

vect-softα(x) = x
max{‖x‖2 − α, 0}

max{‖x‖2 − α, 0}+ α
(32)

for x ∈ Rn and α > 0. Then from [49] we obtain that each
subproblem in (31) has a unique solution and its ith row can
be obtained by

(Vk+1
1,j )[i] = vect-softλ

µ (Wk+1
1 )ij

(((Xk+1P)j +
1

µ
Λk

1,j)
[i])

(33)

where ((Xk+1P)j + 1
µΛ

k
1,j)

[i]
is the ith row of the jth column

block of Xk+1P + 1
µΛ

k
1 , for i = 1, · · · ,m and j = 1, · · · , s.

◦ Update V2. The V2-subproblem is

min
V2

λ

s∑
j=1

‖V2,j‖Wk+1
2,j ,2,1

+
µ

2
‖Xk+1 − V2 +

1

µ
Λk

2‖2F (34)

which is similar to the V1-subproblem. Partition Λ2 as in (25),
then similarly, the ith row of Vk+1

2,j can be obtained by

(Vk+1
2,j )[i] = vect-softλ

µ (Wk+1
2 )ij

((Xk+1
j +

1

µ
Λk

2,j)
[i]) (35)

for i = 1, · · · ,m and j = 1, · · · , s.
◦ Update V3. Let X = ŨDiag(σ̃1, . . . , σ̃r)Ṽ

T
be the

singular value decomposition (SVD) of X and σ̃i is the
ith singular value of X. Define the weighted singular value
thresholding operator SVT on X as

SVTS,β(X)

= ŨDiag ((σ̃1 − βs11)+, . . . , (σ̃r − βsrr)+) Ṽ
T (36)

where ( · )+ = max( ·, 0), S = Diag(s11, . . . , srr) is a
nonnegative weighting diagonal matrix, and β is a positive
parameter. Then consider the V3-subproblem

min
V3

τ‖V3‖Wk+1
3 ,∗ +

µ

2
‖Xk+1 − V3 +

1

µ
Λk

3‖2F (37)

we obtain its closed-form solution

Vk+1
3 = SVTWk+1

3 , τµ
(Xk+1 +

1

µ
Λk

3). (38)

◦ Update V4. Consider the V4-subproblem

Vk+1
4 = argmin

V4

ιR+(V4) +
µ

2
‖Xk+1 − V4 +

1

µ
Λk

4‖2F . (39)

It is easy to obtain that

Vk+1
4 = max(Xk+1 +

1

µ
Λk

4 , 0). (40)

• Update multipliers. The update rules of multipliers are as
follows 

Λk+1
1 = Λk

1 + µ(Xk+1P− Vk+1
1 )

Λk+1
2 = Λk

2 + µ(Xk+1 − Vk+1
2 )

Λk+1
3 = Λk

3 + µ(Xk+1 − Vk+1
3 )

Λk+1
4 = Λk

4 + µ(Xk+1 − Vk+1
4 ).

(41)

To clarify, we summarize the proposed BiJSpLRU
algorithm in the following.
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Algorithm: Pseudocode of the BiJSpLRU Algorithm

Input: Y and A
Select parameters: µ, τ , λ, and maximum iterations
Initialization: V0, Λ0, and set k = 0
Repeat:

Compute Xk+1 by (29)
Compute Wk+1

1 , Wk+1
2 , and Wk+1

3 by (26)
Compute the ith row of the jth block of Vk+1

1 by (33)
Compute the ith row of the jth block of Vk+1

2 by (35)
Compute Vk+1

3 by (38)
Compute Vk+1

4 by (40)
Update Λk+1

i by (41), for i = 1, · · · , 4.
until some stopping criterion is satisfied
Output: X̂ = Xk+1

We remark that both JSpBLUR and BiJSpBLRU have the
same computational complexity. Compared with JSpBLUR,
however, BiJSpBLRU mainly has one extra `2,1-norm sub-
problem, i.e., V1-subproblem.

D. Convergence of BiJSpLRU

There are many convergence results about ADMM iterates
in the literature, such as [50]–[53]. Following the analysis
in [54], we now consider the residual and objective conver-
gence of BiJSpLRU under the following assumption.

Assumption 1. The unaugmented Lagrangian

L0(X,V,W,Λ) = f(X) + g(V,W) + 〈Λ,XG− V〉 (42)

has a saddle point. That is, there exist (X?,V?,W?,Λ?), for
which

L0(X?,V?,W?,Λ) ≤ L0(X?,V?,W?,Λ?)

≤ L0(X,V,W,Λ?)
(43)

holds for all X, V, W, Λ.

From Assumption 1, we get that L0(X?,V?,W?,Λ?) is
finite, (X?,V?,W?) is a solution to (23), and X?G − V? = 0
with f(X?) < ∞ and g(V?,W?) < ∞. Let pk = f(Xk) +
g(Vk,Wk), rk = XkG − Vk, and p? = f(X?) + g(V?,W?).
Then we have the following convergence results of the se-
quence (Xk,Vk,Wk,Λk) generated by (26).

Theorem 1. Let (Xk,Vk,Wk,Λk) be the sequence generated
by (26). Under Assumption 1 and let Wk+1 ≤ W?, then the
sequence (Xk,Vk,Wk,Λk) satisfies the following:
(1) Residual convergence. The residual error rk → 0 as k →
∞.

(2) Objective convergence. The objective function of the iter-
ates approaches the optimal value: f(Xk)+g(Vk,Wk)→
p? as k →∞.

Proof. The proof can be found in the Appendix.

Finally, we remark that in a similar way, one can obtain the
convergence results of ADSpLRU and JSpBLRU, which are
also based on ADMM and a reweighting strategy.

III. EXPERIMENTS ON SIMULATED DATA

In this section, we test the performance of SUnSAL [17],
CLSUnSAL [18], SUnSAL-TV1 [28], ADSpLRU [32], and
JSpBLRU [26], and BiJSpLRU 2 on simulated data. Our tests
were done by using MATLAB R2019a on a desktop with 3.60
GHz Intel Core i9 and 32 GB memory.

A. Experiment Setting

In our experiments, two spectral dictionaries are used:
1) A1 ∈ R224×240: A dictionary of minerals extracted from

the U.S. Geological Survey (USGS). The reflectance
values are given in 224 spectral bands with uniform
distribution in the interval of 0.4–2.5 µm.

2) A2 ∈ R99×120: It consists of 120 materials and 99
spectral bands. It is from the National Aeronautics and
Space Administration Johnson Space Center Spacecraft
Materials Spectral Database.

We use the root-mean-square error (RMSE) and the signal-to-
reconstruction error (SRE) to measure the performance of the
estimated abundance matrices. They are defined as,

RMSE =

√√√√ 1

mn

n∑
i=1

‖x̂i − xi‖22

SRE (dB) = 10 log10

( ∑n
i=1 ‖xi‖22∑n

i=1 ‖x̂i − xi‖22

) (44)

respectively, where x̂i and xi are the estimated and true
abundance vectors of the ith pixel. Generally speaking, lower
RMSEs and higher SREs give better estimations. For all
six algorithms, regularization parameters are chosen to get
maximum SREs. Similarly as in [26], we set d = 3 for both
JSpBLRU and BiJSpLRU in the experiments. That said, for
n pixels in an HSI, let s = bn/dc be the largest integer no
greater than n/d, then each of the first s − 1 blocks in (14)
contains d columns and the last block contains the remains.
We select optimal regularization parameters for low-rank un-
mixing algorithms: ADSpLRU, JSpBLRU, and BiJSpLRU, as
follows:

λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
τ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} .

We select optimal regularization parameters for SUnSAL,
CLSUnSAL and SUnSAL-TV from the following sequence:

{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} .

In addition, we select µ from {0.001, 0.01, 0.1, 1}. All pos-
sible combinations are considered.

For BiJSpLRU, recall the primal residual rk and define
the dual residual sk at the kth iteration as

rk = XkG− Vk

sk = µ(Vk − Vk−1)GT .
(45)

1The MATLAB codes of SUnSAL, CLSUnSAL, and SUnSAL-TV are
available at http://www.lx.it.pt/~bioucas/publications.html

2The MATLAB codes of JSpBLRU and BiJSpLRU are available at
https://huangjie-uestc.github.io/



7
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Fig. 4: True and estimated abundance maps for Example 1 with SNR = 30 dB for endmembers (top row) #1 and (bottom row)
#2.
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Fig. 5: True abundance maps of selected endmembers for Example 2. From left to right: Endmembers #1–#5.
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Fig. 6: True abundance maps for selected endmembers for Example 3. Top row: endmembers #1–#5. Bottom row: endmembers
#6–#9.

TABLE I: Average of SRE (dB) and RMSE after 20 runs by different unmixing algorithms for Example 1 with SNR = 30 dB.

Criteria SUnSAL CLSUnSAL SUnSAL-TV ADSpLRU JSpBLRU BiJSpLRU
SRE 6.58 7.70 8.45 19.11 19.94 21.17

RMSE 0.0205 0.0180 0.0165 0.0048 0.0044 0.0038
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Fig. 7: True and Estimated abundance maps by different unmixing algorithms for Example 2 with SNR = 30 dB for endmembers
(top row) #1 and (bottom row) #5.

When both termination conditions

‖rk‖F ≤ ζ, ‖sk‖F ≤ ζ (46)

are satisfied or the number of iterations reaches 300, the
iterations are stopped. Here we set ζ =

√
(3m+ l)nζrel as in

[26], where ζrel = 5× 10−6.

B. Comparison With Different Algorithms
In the following, we show the performance of BiJSpLRU

and other unmixing algorithms on three simulated examples.
Example 1: In this experiment, we consider a toy problem

to highlight the significance of the proposed approach, i.e.,
the bilateral joint-sparse structure. We use the spectral library
A1 and randomly select five signatures from A1 to generate
a 15× 15-pixel data cube according to LMM. There are five
abundance maps, two of which are shown in the first column
in Fig. 4 and the rest three are randomly generated with the
ASC. Note that the true abundance maps in Fig. 4 show a clear
spatial characteristic along vertical or horizontal directions.
The generated data cube is contaminated by white Gaussian
i.i.d. noise with signal-to-noise ratio (SNR) of 30 dB.

Example 2: This example shows the performance of BiJS-
pLRU on a widely used simulation data set, which has been
used in [26], [28], [34]. The spectral library A1 is used. Five
signatures are randomly chosen from A1 and then used to
generate a 75× 75-pixel data cube according to LMM. Fig. 5
shows corresponding true abundance maps of the five selected
endmembers. The generated data cube is contaminated by
white Gaussian i.i.d. noise with SNR = 20, 30, and 40 dB,
respectively.

Example 3: We use the spectral library A2 in this example.
The data set contains 100 × 100 pixels and is generated
according to the LMM by nine randomly selected spectral
signatures from A2. The corresponding true abundance maps
are shown in Fig. 6. Then, the true data cube is contaminated
by white Gaussian i.i.d. noise with the same SNR values
adopted for Example 2.

Results and Discussion: Fig. 4 shows the estimated abun-
dance maps by different unmixing algorithms for Example 1.

TABLE II: SRE (dB) and RMSE by different unmixing
algorithms for Examples 2 and 3.

Example 2

Algorithm SNR = 20 dB SNR = 30 dB SNR = 40 dB
SRE RMSE SRE RMSE SRE RMSE

SUnSAL 2.21 0.0268 5.61 0.0181 11.16 0.0096
CLSUnSAL 6.26 0.0168 9.88 0.0111 16.94 0.0049
SUnSAL-TV 8.76 0.0126 12.71 0.0080 22.92 0.0025
ADSpLRU 6.51 0.0163 14.96 0.0062 32.45 0.0008
JSpBLRU 9.40 0.0117 15.99 0.0055 32.92 0.0008
BiJSpLRU 9.44 0.0116 17.24 0.0047 33.29 0.0007

Example 3

Algorithm SNR = 20 dB SNR = 30 dB SNR = 40 dB
SRE RMSE SRE RMSE SRE RMSE

SUnSAL 3.37 0.0492 8.22 0.0281 13.51 0.0153
CLSUnSAL 2.39 0.0550 5.63 0.0379 11.07 0.0203
SUnSAL-TV 8.21 0.0281 13.43 0.0154 19.75 0.0075
ADSpLRU 7.34 0.0311 17.00 0.0102 26.40 0.0035
JSpBLRU 9.98 0.0230 18.82 0.0083 28.44 0.0027
BiJSpLRU 12.12 0.0180 20.43 0.0069 29.70 0.0024

From this figure, we see that sparse unmixing algorithms
SUnSAL and CLSUnSAL maintain the overall vertical and
horizontal spatial information, but with many low abundance
values supposing to be zero. By exploiting spatial informa-
tion, SUnSAL-TV provides better estimations. For low-rank
unmixing algorithms, JSpBLRU utilizes the vertical spatial
information so it provides more accurate abundance estimates
for endmember #2 compared with ADSpLRU. For endmember
#1, however, the estimated abundance map of JSpBLRU also
contains many low abundance values supposing to be zero.
By simultaneously exploiting vertical and horizontal spatial
information, the proposed BiJSpLRU algorithm provides ac-
curate estimations for both endmembers #1 and #2. For further
comparison, Table I shows the average SREs and RMSEs after
20 runs of different algorithms for Example 1. It is clear that
BiJSpLRU gives higher SRE and lower RMSE values, which
is consistent with the visual observations from Fig. 4.

Fig. 7 shows the estimated abundances maps for endmem-
bers #1 and #5 obtained by different unmixing algorithms
for Example 2. Abundance maps for other endmembers show
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Fig. 8: True and estimated abundance maps by different unmixing algorithms for Example 3 with SNR = 30 dB for (from top
to bottom) endmembers #2, #4, #7, and #9.
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Fig. 9: Detailed regions in red boxes from Fig. 8 for (from top to bottom) endmembers #2, #4, #7, and #9.
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Fig. 10: SRE (dB) as a function of regularization parameters λ and τ in BiJSpLRU for Example 3.
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Fig. 11: Plot of SRE (dB) against iteration by BiJSpLRU for
Example 3.

Fig. 12: The USGS map showing the location of different
minerals in the Cuprite mining district in Nevada.

a similar conclusion, so we omit here for space considera-
tions. Compared with SUnSAL and CLSUnSAL, SUnSAL-TV
maintains the piecewise smooth behavior in the backgrounds,
especially for endmember #5. But the abundance map of
SUnSAL-TV is over-smooth for endmember #1. Low-rank
unmixing algorithms delineate more square regions for end-
member #1. Among them, BiJSpLRU produces most square
blocks. It can be expected since BiJSpLRU utilizes more
spatial information than ADSpLRU and JSpBLRU, especially
for pixels in the boundaries.

The abundance maps estimated by different algorithms for
Example 3 are shown in Fig. 8. Particularly, the regions in red
boxes are zoomed in and displayed in Fig. 9. SUnSAL and
CLSUnSAL estimate abundance maps with low accuracy. Note
that each of the two algorithms has only one regularization
parameter so it is time-saving to select optimal parameter
values compared with other algorithms. In addition, they are
fast since there is no need to implement the TV or SVD at each
iteration. SUnSAL-TV provides piecewise smooth estimations,
in which many details are lost. Clearly, the backgrounds of the
abundance maps estimated by JSpBLRU are more clear than
those by ADSpLRU. However, when we zoom in the abun-
dance maps of JSpBLRU, we can see much banded vertical
noise in the backgrounds. The reason is, in part, that JSpBLRU
utilizes the local joint-sparsity structure along the vertical
direction of the HSI. BiJSpLRU addresses this problem by
utilizing both vertical and horizontal spatial information. We
can see that BiJSpLRU provides accurate abundance maps
with clearer backgrounds. Finally, Table II shows the SRE and
RMSE values by different unmixing algorithms for Examples
2 and 3. We see that BiJSpLRU provides the optimal results,
which is consistent with the observations from Figs. 7-9.

C. Parameters Discussion

Now we discuss the influence of the regularization param-
eters λ and τ and the number of iterations of BiJSpLRU.
Recall that in the simulated experiments, we test all possible
combinations of parameters for BiJSpLRU and choose the
optimal ones for best SREs. Fig. 10 plots the SRE values
as a function of parameters λ and τ in the model (18) for
Example 3. We can see that both optimal parameters decrease
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Fig. 13: Estimated abundance maps for (top row) Alunite, (middle row) Buddingtonite, and (bottom row) Muscovite by different
unmixing algorithms. The demarcated area is enlarged in the right bottom corner for better visualization.

as SNR increases. Optimal τ is far greater than optimal λ,
which shows the effectiveness of the low-rank regularizer.

Fig. 11 plots the SRE values against iteration for Example 3.
Clearly for BiJSpLRU, it is enough to set the maximum
number of iterations to be 300. In addition, we see from Fig. 11
that for different noise levels, the convergence behavior of
BiJSpLRU becomes stable as the iteration increases.

IV. EXPERIMENTS ON REAL DATA

In this test, we show the performance of BiJSpLRU on the
well-known Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Cuprite data set. Fig. 12 shows a mineral map
produced in 1995 by USGS, in which different minerals were
mapped by a Tetracorder software product [55]. We use a
subscene of the Cuprite data with 350 × 350 pixels and 188
spectral bands. The spectral dictionary A of size 188 × 240
is generated from the USGS spectral library. Similarly as in
[17], [18], [28], we set regularization parameters λ = 0.001
for SUnSAL, λ = 0.01 for CLSUnSAL, and λ = λTV =
0.001 for SUnSAL-TV. Similarly as in [26] and [32], we set
λ = τ = 0.001 for ADSpLRU, JSpBLRU, and BiJSpLRU.

Fig. 13 shows the estimated abundance maps obtained by
different unmixing algorithms. Due to the low noise of the real
data, all the algorithms produce overall similar results. From
the enlarged area in the right bottom corner in Fig. 13, how-
ever, we can see that BiJSpLRU gives comparable or higher
estimates in the regions considered as respective materials. It
shows again the effectiveness of BiJSpLRU by simultaneously
utilizing the bilateral joint sparsity structure and the low
rankness of the abundance matrix.

V. CONCLUSION

In this paper, we have proposed a bilateral joint-sparse struc-
ture to utilize the vertical and horizontal spatial information

of HSIs. In particular, we realize the bilateral joint-sparse
structure by introducing a permutation matrix, which is no
need to be constructed explicitly. Then we have proposed
an unmixing model by imposing the bilateral joint-sparse
structure and the low-rank property on the abundance matrix,
via the weighted `2,1-norm and the weighted nuclear norm,
respectively. We solve the proposed model under the ADMM
framework with an iterative reweighting strategy, leading to
an algorithm called BiJSpLRU. The residual and objective
convergence results of BiJSpLRU have been provided. The
simulated and real-data experiments show the effectiveness of
the proposed algorithm, compared with other state-of-the-art
unmixing algorithms.

The proposed bilateral joint-sparse structure has the po-
tential to contribute other image processing problems via
sparse representation, such as (hyperspectral) image restora-
tion, super-resolution, blind hyperspectral unmixing, etc. In
addition, the article provides a way to obtain theoretical
convergence results of algorithms which are similarly based
on the ADMM framework but with a reweighted strategy.

APPENDIX

In order to prove Theorem 1 about the convergence of
the sequence (Xk,Vk,Wk,Λk) by (26), we first give three
lemmas.

Lemma 1. Let (Xk,Vk,Wk,Λk) be the sequence generated
by (26). Then under Assumption 1, we have

p? − pk+1 ≤ 〈Λ?, rk+1〉. (47)

Proof. Recall from (43), we have

L0(X?,V?,W?,Λ?) ≤ L0(Xk+1,Vk+1,Wk+1,Λ?). (48)
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That is

f(X?) + g(V?,W?) + 〈Λ?,X?G− V?〉
≤f(Xk+1) + g(Vk+1,Wk+1) + 〈Λ?,Xk+1G− Vk+1〉.

(49)

Notice that X?G−V? = 0, then p? ≤ pk+1 + 〈Λ?, rk+1〉.

Lemma 2. Under the assumptions as in Lemma 1, if Wk+1 ≤
W?, then

pk+1 − p? ≤ −〈Λk+1, rk+1〉
+µ〈Vk+1 − Vk,−rk+1 − (Vk+1 − V?)〉.

(50)

Proof. From (26), we see that Xk+1 minimizes
L(X,Vk,Wk,Λk), or equivalently miminizes

f(X) + 〈Λk,XG− Vk〉+ µ

2
‖XG− Vk‖2F . (51)

Since f is differentiable, the optimality condition is

0 = Of(Xk+1) +ΛkGT + µ(Xk+1G− Vk)GT . (52)

Recall that Λk+1 = Λk + µ(Xk+1G− Vk+1), then we have

0 = Of(Xk+1) + (Λk + µ(Xk+1G− Vk+1))GT

+ µ(Vk+1 − Vk)GT

= Of(Xk+1) + (Λk+1 + µ(Vk+1 − Vk))GT
(53)

which implies that Xk+1 minimizes

f(X) + 〈Λk+1 + µ(Vk+1 − Vk),XG〉. (54)

Thus we have

f(Xk+1) + 〈Λk+1 + µ(Vk+1 − Vk),Xk+1G〉
≤ f(X?) + 〈Λk+1 + µ(Vk+1 − Vk),X?G〉.

(55)

Similarly, Vk+1 minimizes L(Xk+1,V,Wk+1,Λk). Let

h(V) = g(V,Wk+1), (56)

then Vk+1 equivalently minimizes

h(V) + 〈Λk,Xk+1G− V〉+ µ

2
‖Xk+1G− V‖2F . (57)

We remark that the minimization problem about V3 can
be transformed into a convex minimization problem about
its singular values; see [48] for more details. Since h is
subdifferentiable, the optimality condition for (57) is

0 ∈ ∂h(Vk+1)−Λk+µ(Vk+1−Xk+1G) = ∂h(Vk+1)−Λk+1.
(58)

It implies that Vk+1 minimizes

h(V)− 〈Λk+1,V〉 = g(V,Wk+1)− 〈Λk+1,V〉. (59)

It follows that

g(Vk+1,Wk+1)−〈Λk+1,Vk+1〉 ≤ g(V?,Wk+1)−〈Λk+1,V?〉.
(60)

Under the assumption of Wk+1 ≤ W?, then from the definition
of g, we have g(V?,Wk+1) ≤ g(V?,W?) and

g(Vk+1,Wk+1)− 〈Λk+1,Vk+1〉 ≤ g(V?,W?)− 〈Λk+1,V?〉.
(61)

Now together with (55) and (61), we get

f(Xk+1) + 〈Λk+1 + µ(Vk+1 − Vk),Xk+1G〉
+ g(Vk+1,Wk+1)− 〈Λk+1,Vk+1〉

≤f(X?) + 〈Λk+1 + µ(Vk+1 − Vk),X?G〉
+ g(V?,W?)− 〈Λk+1,V?〉.

(62)

That is,

pk+1 + 〈Λk+1, rk+1〉+ µ〈Vk+1 − Vk,Xk+1G〉
≤p? + µ〈Vk+1 − Vk,X?G〉

(63)

following that

pk+1 − p?

≤ −〈Λk+1, rk+1〉+ µ〈Vk+1 − Vk, (X? − Xk+1)G〉,
= −〈Λk+1, rk+1〉

+ µ〈Vk+1 − Vk,V? − Vk+1 − (Xk+1G− Vk+1)〉,
= −〈Λk+1, rk+1〉+ µ〈Vk+1 − Vk,−rk+1 − (Vk+1 − V?)〉

(64)

which conclude the proof.

Lemma 3. Let (Xk,Vk,Wk,Λk) be the sequence generated
by (26). Let

tk =
1

µ
‖Λk −Λ?‖2F + µ‖Vk − V?‖2F (65)

then under the assumptions as in Lemmas 1 and 2, we have

tk − tk+1 ≥ µ‖rk+1 + (Vk+1 − Vk)‖2F . (66)

Proof. Together with (50) and (47), we obtain that

0 ≤ 〈−Λk+1+Λ?, rk+1〉+µ〈Vk+1−Vk,−rk+1−(Vk+1−V?)〉
(67)

which implies that

2〈Λk+1 −Λ?, rk+1〉+ 2µ〈Vk+1 − Vk, rk+1〉
+ 2µ〈Vk+1 − Vk,Vk+1 − V?〉 ≤ 0.

(68)

Let

c1 = 2〈Λk+1 −Λ?, rk+1〉
c2 = 2µ〈Vk+1 − Vk, rk+1〉+ 2µ〈Vk+1 − Vk,Vk+1 − V?〉.

(69)

Then (68) gives that c1 + c2 ≤ 0.
We first simplify c1. Recall that Λk+1 = Λk + µrk+1 and

rk+1 = 1
µ (Λ

k+1 −Λk), then we get

c1 = 2〈Λk+1 −Λ?, rk+1〉 = 2〈Λk + µrk+1 −Λ?, rk+1〉
= 2〈Λk −Λ?, rk+1〉+ µ‖rk+1‖2F + µ‖rk+1‖2F

= 2〈Λk −Λ?,
1

µ
(Λk+1 −Λk)〉+ 1

µ
‖Λk+1 −Λk‖2F

+ µ‖rk+1‖2F

=
1

µ

(
2〈Λk −Λ?,Λk+1 −Λk〉+ ‖Λk+1 −Λk‖2F

)
+ µ‖rk+1‖2F

=
1

µ

(
‖Λk+1 −Λ?‖2F − ‖Λ

k −Λ?‖2F
)
+ µ‖rk+1‖2F .

(70)
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We now rewrite µ‖rk+1‖2F + c2, i.e.,

µ‖rk+1‖2F + c2

= µ‖rk+1‖2F + 2µ〈Vk+1 − Vk, rk+1〉
+ 2µ〈Vk+1 − Vk,Vk+1 − V?〉

= µ‖rk+1‖2F + 2µ〈Vk+1 − Vk, rk+1〉
+ 2µ〈Vk+1 − Vk,Vk+1 − Vk + Vk − V?〉

= µ‖rk+1 + (Vk+1 − Vk)‖2F + µ‖Vk+1 − Vk‖2F
+ 2µ〈Vk+1 − Vk,Vk − V?〉

= µ‖rk+1 + (Vk+1 − Vk)‖2F
+ µ

(
‖Vk+1 − V?‖2F − ‖V

k − V?‖2F
)
.

(71)

Together with (70) and (71), we have

c1 + c2

=
1

µ

(
‖Λk+1 −Λ?‖2F − ‖Λ

k −Λ?‖2F
)

+ µ
(
‖Vk+1 − V?‖2F − ‖V

k − V?‖2F
)

+ µ‖rk+1 + (Vk+1 − Vk)‖2F
= tk+1 − tk + µ‖rk+1 + (Vk+1 − Vk)‖2F ≤ 0.

(72)

We now obtain the proof of Theorem 1.

Proof of Theorem 1. (1) Lemma 3 says that {tk} in (65) is
monotonically decreasing. As {tk} is bounded from below,
{tk} converges, which implies that {Λk} and {Vk} converge.
Iterating the inequality in (66) gives that

t0 ≥ µ
∞∑
k=0

‖rk+1 + (Vk+1 − Vk)‖2F (73)

which implies that rk+1+(Vk+1−Vk)→ 0, as k →∞. Since
{Vk} converges, then we have rk → 0 as k → ∞. It follows
that {Xk} converges.

(2) Recall from (1) that {Λk} and {Vk} converge and
rk → 0, then Lemmas 1 and 2 give pk → p?, as k →∞.
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