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a b s t r a c t

Hyperspectral unmixing is an essential step for the application of hyperspectral images (HSIs),
which estimates endmembers and their corresponding abundances. In recent decades, nonnegative
matrix factorization (NMF) and nonnegative tensor factorization (NTF) have been widely exploited
for hyperspectral unmixing. To improve the unmixing performance, various constraints have been
applied in many NMF-based and NTF-based methods. Though many regularizations are used to describe
abundances’ properties, less attention is paid to endmember signatures. Notice that, endmember
information is important for obtaining accurate estimated endmembers from the highly correlated
spectral signatures in HSIs. Thus, constraints on both endmembers and abundances are expected to
make spectral signatures separated adequately. In this paper, we propose a new NTF-based model,
termed as endmember independence constrained hyperspectral unmixing via NTF (EIC-NTF). It aims to
mitigate the impact of high correlation among spectral signatures from endmembers and abundances.
For endmember estimation, we introduce an endmember independence constraint to avoid obtaining
similar endmembers estimations. For abundance estimation, we exploit the low-rankness in abundance
maps to describe the spatial correlation of mixed pixels lying in homogeneous regions of HSIs. We solve
the proposed model under the augmented multiplicative update framework. Experimental results on
both synthetic and real hyperspectral data demonstrate that the proposed algorithm is effective for
hyperspectral unmixing.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Hyperspectral images (HSIs) not only contain spatial informa-
ion but a large amount of spectral information. Thus they have
een widely used in many fields, such as target detection and
lassification [1–4]. Due to the low spatial resolution and the
omplex distribution of ground features, an HSI contains plenty of
ixed pixels, whose spectral signatures are composed of several
ure substances (endmembers) [5]. The existence of mixed pixels
ncreases the difficulty of applying HSIs. Therefore, hyperspectral
nmixing, decomposing a mixed pixel into several endmembers
nd its corresponding fractions (abundances), plays an important
ole in HSIs processing [6–8].

Recall that a mixed pixel is the result of a mixing process, thus,
he type of mixing is critical for hyperspectral unmixing. Due to
he simplicity and applicability of the linear mixing model (LMM),
t is applied in many unmixing algorithms [6,9–11]. Under the
MM, a mixed pixel is a linear combination of the endmembers,
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proportioned by their corresponding abundances [12]. Usually,
the abundances meet two physical constraints: the abundance
nonnegative constraint (ANC) and the abundance sum-to-one
constraint (ASC).

Based on LMM, many unmixing strategies have been proposed,
ranging from endmember determination to a semi-supervised
strategy [9,13–16]. Endmember determination methods, such as
Pixel Purity Index (PPI) [17], N-FINDR [18], and Vertex Compo-
nent Analysis (VCA) [13], are used to estimate endmembers. They
assume that pure pixels exist in an HSI, which is rather strict
in some practical situations. For the semi-supervised strategy
based methods, they need the endmembers in an HSI or a library
including all endmembers in advance.

When endmembers in an HSI are unavailable, unmixing prob-
lems are transformed as blind source separation (BSS) problems.
To tackle BSS, nonnegative matrix factorization (NMF) and its
extensions have been introduced for hyperspectral unmixing [19–
22]. The NMF-based methods decompose a 3-D HSI into a 2-D ma-
trix approximated by the product of two nonnegative matrices.
One nonnegative matrix denotes the material endmembers and
the other represents the related abundances [23,24]. According

to the data analysis, NMF provides a part-based representation
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f the data [25]. Unfortunately, these NMF-based methods are
onconvex, which is hard to avoid the existence of local minima.
popular method to overcome this drawback is by introducing

dditional constraints into NMF according to the priors of HSIs.
sually, sparse constraint with ℓq norm is incorporated into NMF
o enhance the sparsity of the abundance matrix [21,22,26]. In ad-
ition, spatial information among pixels is also exploited in many
MF-based algorithms [10,27–29]. With the popularity of the
eep learning strategy, many deep learning-based unmixing ap-
roaches have been proposed for the unmixing process to achieve
owerful and flexible feature representations [30–33]. They pro-
ide more accurate unmixing results. Considering the run-time
nd accuracy of the HSI unmixing process, we concentrate on
tudying traditional unmixing models in this paper.
Even NMF models achieve promising unmixing results, they

iss a lot of spectral and spatial information when decomposing
3-D data into a 2-D matrix [34]. To remain more image infor-
ation, Qian et al. [34] introduce a matrix–vector nonnegative

ensor factorization (MV-NTF) model. They view a 3-D HSI as the
um of several tensors, which is the outer product of a matrix
abundance map) and a vector (endmember signature). Besides,
hey also impose the low-rank structure on each abundance
ap with the product of two low-rank matrices. The frame-
ork of MV-NTF is consistent with the LMM and catches the

ntrinsic structure of the HSI. To relive the effect of noise, Feng
t al. propose an algorithm called total variation (TV) regular-
zed MV-NTF [MV-NTF-TV] [35]. MV-NTF-TV incorporates the TV
erm into the framework of MV-NTF to suppress the noise and
ecrease the number of local minima. At the same time, TV adap-
ively promotes piecewise smoothness while preserving edges
36]. Generally, these MV-NTF based methods behave better than
MF-based methods for hyperspectral unmixing. However, the
orceful low-rank constraint on abundance maps may limit the
epresentation of some details in HSI. Moreover, MV-NTF based
ethods lack guarantees that mixed spectral signatures sepa-

ate adequately. In other words, some endmembers obtained by
V-NTF may be similar.
In this paper, we propose an algorithm named endmember

ndependence constrained hyperspectral unmixing via nonnega-
ive tensor factorization (EIC-NTF). The proposed EIC-NTF method
onsiders an endmember independence constraint and the low-
ank structure of each abundance map to alleviate the high cor-
elation among spectral signatures. The framework of EIC-NTF is
hown in Fig. 1. First, an HSI is decomposed into the sum of the
uter product of endmembers and their related abundance maps.
hen, applying the endmember independence constraint on the
ndmembers and the low-rank constraint on each abundance
ap, we obtain the smooth endmember signatures and the low-

ank abundance maps. Finally, we update the abundance maps
nd endmembers with the above results in each iteration until
eeting the stop condition. Experiments on both synthetic and

eal data have shown the advantages of our method over several
tate-of-the-art approaches. The main contributions of this paper
re:

1. According to LMM, endmembers are different and linear in-
dependent from each other. To relieve the high correlation
between spectral signatures, we introduce an endmem-
ber independence constraint to remain the feature of the
endmember signatures and constrain them to be smooth.

2. Recall that NTF-based methods consider a natural rep-
resentation of an HSI, it avoids information loss when
decomposing a 3-D data into a 2-D matrix. We formulate
the proposed method based on the NTF model. Different
from the fixed rank of each abundance map in MV-NTF, we
describe the low-rankness of each abundance map with the
weighted nuclear norm. The weighted nuclear norm treats
each abundance map differently.
2

The rest of this paper is organized as follows. Section 2 briefly
introduces tensor basis, LMM, and the NTF model. Section 3
shows the details of the proposed model, the associated update
rules. The experimental results on synthetic data are presented
and analyzed in Section 4. In Section 5, real-data experiments
are conducted. Finally, conclusions and future work are given in
Section 6.

2. Background and notations

This section will introduce some basic concepts about tensor
to link the nonnegative tensor factorization and hyperspectral
unmixing. We then present the LMM model and how the LMM
is applied in hyperspectral unmixing.

2.1. Tensor notations and concepts

A tensor is a multidimensional array [37]. The N-th order
tensor denotes a tensor which contains N dimensions, and each
dimensionality has its coordinate system. In this paper, scalars,
tensors of order zero, are denoted by lowercase letters, e.g., y.
Vectors, first-order tensors, are denoted by boldface lowercase
letters, e.g., y ∈ RI . Matrices, second-order tensors, are denoted
by boldface capital letters, e.g., Y ∈ RI×J . Higher-order tensors,
tensors of order three or higher, are represented by boldface Euler
script letters, e.g., Y ∈ RI1×I2×···×IN .

Definition of the Matricization: Matricization transforms a
tensor into a matrix. Specifically, the mode-n matricization of
a tensor X ∈ RI1×I2···×IN reorders the mode-n arrays to be the
columns of the resulting matrix, which is denoted by X(n). Taken
a third-order tensor Y ∈ RI×J×L as an example, it can be unfolded
in three ways according to its three mode arrays, respectively,(
Y(1)

)
(j − 1)L + l, i = yijl(

Y(2)
)
(l − 1)I + i, j = yijl(

Y(3)
)
(i − 1)J + j, l = yijl.

Definition of the Outer Product: Given K vectors b(i)
∈

RNi , i = 1, . . . , K , the outer product between them is a tensor
X = b(1)

◦ b(2)
◦ · · · ◦ b(K )

∈ RN1×N2×···×NK . Each element of the
tensor X is the product of the corresponding vector elements:

xi1 i2···iR = b(1)i1
× b(2)i2

· · · b(K )iK
for all 1 ≤ in ≤ Ni

Definition of the Kronecker Product and Khatri–Rao Prod-
uct: Given two matrices A ∈ RI×J ,B ∈ RK×L, their Kronecker
product, A ⊗ B ∈ R(IK )×(JL), is defined by

A ⊗ B =

⎛⎜⎜⎝
a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

⎞⎟⎟⎠
= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL],

where aj (j = 1, 2, . . . , J) denotes the jth column in A, aij denotes
the element (i, j) of A. A similar denotation is as B.

When A and B have the same number of columns, i.e., J = L,
their Khatri–Rao product A ⊙ B ∈ R(IK )×J , is denoted by

A ⊙ B = [a1 ⊗ b1 a2 ⊗ b2 · · · aJ ⊗ bJ ].

When A = [A1 · · ·AR] and B = [B1 · · ·BR] are two block
matrices with the same number of submatrices, the generalized
Khatri–Rao product for partitioned matrices is

A⊙̄B = [A1 ⊙ B1 A2 ⊙ B2 · · · AR ⊙ BR].
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Fig. 1. Framework of the proposed method. At first, the given HSI is decomposed into the sum of the outer product of endmembers cr and abundance maps Er .
hen, the endmember constraint and the low-rank constraint are imposed on endmember signatures and each abundance map respectively, leading to relatively
ndependent endmember signatures and the low-rank abundance maps. The spectral and spatial information is fed back to the next iteration of a tensor factorization
o improve the results iteratively. Finally, the proposed method provides independent endmembers and low-rank abundance maps.
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.2. LMM

Given an HSI Y ∈ RI×J×L, containing I × J pixels with L bands.
nd yi ∈ RL is the ith mixed pixel. The LMM [6] expresses it as

yi = Csi + αi,

s.t. 1T si = 1, si ≥ 0,
(1)

where C = [c1 · · · cR] ∈ RL×R, ci ∈ RL×1 denotes the ith
endmember, si ∈ RR is a vector of abundance fractions for each
endmember, and αi is an additive white Gaussian noise. Here,
1 ∈ RR×1 is a vector whose all elements are one. In Eq. (1), si ≥ 0
in (1) is the ANC and 1T si = 1 in (1) is the ASC.

For the classical NMF, an HSI, Y ∈ RI×J×L is unfolded cor-
esponding to its mode-3 vectors. Then, the unmixing model
ccording to LMM is written as

(3) = CS + α,

here Y(3) ∈ RL×(IJ) contains I × J pixels with L bands, S =

s1 s2 · · · sIJ ], and α = [α1 α2 · · · αIJ ]. And, the corresponding
oss function of NMF is considered as

in
C,S

1
2
∥Y(3) − CS∥2

F ,

where ∥ · ∥F denotes the Frobenius norm.
To enhance the sparsity of the abundance maps, Qian et al.

incorporate the L1/2 regularization into NMF, named L1/2-NMF.
This objective function is the combination of the reconstruction
error and the L1/2 regularization as follows

min
C,S

1
2
∥Y(3) − CS∥2

F + λ∥S∥1/2,

here λ ∈ R+ is a scalar that weights the contribution of the L1/2
egularization.
3

As described above, though NMF methods obtain great perfor-
ance, they fail to fully preserve the spatial positions of pixels

n the row indices, which is unavoidable to cause information
oss [34]. Considering this situation, Qian et al. propose an MV-
TF model that regards an HSI as a 3-D tensor. This approach
ecomposes the observed 3-D HSI into the sum of R component
ensors, where each one is factorized as the outer product of
matrix and a vector, representing abundance and endmem-
er, respectively [34]. As illustrated in [34], MV-NTF is entirely
onsistent with the LMM. Mathematically, it can be formulated as

Y =

R∑
r=1

ArBT
r ◦ cr + α =

R∑
r=1

Er ◦ cr + α, (2)

here Er ∈ RI×J is the abundance map corresponding to the rth
ndmember, approximately represented by two low-rank matri-
es Ar and Br , cr is the rth endmember. By incorporating the ASC
onstraint, Eq. (2) becomes minimizing the reconstruction error
etween Y and its R component tensors, which is represented by

min
A,B,C

1
2
∥Y −

R∑
r=1

ArBT
r ◦ cr∥2

F +
δ

2
∥1I×J − ABT

∥
2
F , (3)

where 1I×J is a matrix of all ones and δ ∈ R+ controls the balance
between the reconstruction error and the ASC.

Treating the HSI as a whole tensor, MV-NTF takes advantage
of 3-D information contained in an HSI. To exploit the local piece-
wise smoothness of the abundance maps and suppress the effect
of noise, the TV regularization is imposed on MV-NTF in [35].



J.-J. Wang, D.-C. Wang, T.- Z. Huang et al. Knowledge-Based Systems 216 (2021) 106657

3

t
t

3

d
s
p
s
B
G
s
f

w
t
s
t
t
a
i
t
s
n
s
e
F
a
b
c
e

g

w
w

w

w
s

3

i
i

Fig. 2. Spectral signatures of six endmembers in USGS digital spectral library.

. The proposed EIC-NTF algorithm

In this section, we first introduce the crucial components of
he proposed model, and then present the proposed model and
he corresponding algorithm.

.1. Endmember independence constraint

Recall that both endmembers and the corresponding abun-
ances are the goals of hyperspectral unmixing, thus endmember
ignature constraints are also taken into account in the unmixing
rocess. To analyze the endmember signatures, in Fig. 2, we
how six endmembers (Carnallite, Ammonio-jarosite, Almandine,
rucite, Axinite, and Chlonte), which are from the United States
eological Survey (USGS) digital spectral library [38]. The selected
pectral signatures contain 224 spectral bands with wavelengths
rom 0.38 to 2.5 µm.

According to Fig. 2, each endmember is independent of others,
hich is consistent with the assumption of LMM. In practice,
he endmember signatures in HSIs are highly mixed and the
pectral curves to be decomposed are highly correlated [39]. In
his case, utilizing the spatial information is hard to guarantee
hat the spectral curves are separated adequately. To achieve
ccurate endmember curves, we introduce a new endmember
ndependence constraint for endmember signatures. Recall that
he bilateral filter is a popular image processing technique, which
imultaneously preserves the edge and smooths the homoge-
eous region [40]. To present a more intuitive illustration, we
how endmember Carnallite corrupted by noise and the recov-
red endmember Carnallite by the bilateral filter in Fig. 3. From
ig. 3, we observe that BF retains most of the spectral information
nd smoothes the endmember signature. Thus, we utilize the
ilateral filter (BF) to capture these endmembers’ features and
onstrain them to be smooth. Based on BF, we introduce an
ndmember signature constraint defined as follows

(C) = ∥C. ∗ W∥
2
F , (4)

here .∗ denotes the element-wise product. Here, W = [w1, . . . ,

R] is a weighting matrix, its ith column wi is defined as

i = 1./(BF(ci) + η) , i = 1, . . . , R,

here BF is the bilateral filter, ./ denotes the element-wise divi-
ion, and η is a small value.

.2. Low-rank approximation

Low-rank approximation, which aims to recover the underly-
ng low-rank matrix from its degraded data, has been widely used
n computer vision and machine learning [41–44]. The low-rank
4

Fig. 3. The signature of endmember Carnallite corrupted by noise and the
recovered endmember Carnallite by BF, the green line denotes endmember
Carnallite corrupted by noise and the red line denotes recovered endmember
Carnallite by BF.

approximation problem is first introduced with the rank function,
that is,
min
X

rank(X) s.t. X ∈ C,

where rank(.) is the rank function, C is a convex set. Since the
rank function is a difficult non-convex problem and hard to
solve, the problem is generally relaxed by minimizing the nuclear
norm of the estimated matrix, which is called as nuclear norm
minimization (NNM) [45]. The nuclear norm of X is defined as

∥X∥∗ =

∑
i

σi(X),

where σi(X) represents the ith singular value of X. Due to the
closed-form solution of the NNM approach, it has attracted sig-
nificant attention and applications. However, for the NNM, all
singular values are treated equally, which is not flexible enough
to catch the homogenous region and texture information simulta-
neously. To improve the flexibility of NNM, a reweighted nuclear
norm has been introduced and the reweighted norm of X is

∥X∥w,∗ =

∑
i

wiσi(X),

where wi are nonnegative weighting coefficients, ϵ is a small
constant added to avoid singularities. This strategy is widely used
for many practical problems (see [46–49]).

As the neighboring pixels tend to be homogeneous and con-
stituted from the same endmembers, the low rankness of abun-
dances is exploited frequently for hyperspectral unmixing [46,48,
50,51]. Considering that the highly correlated spectral signatures
are also reflected as a high correlation among the pixel members
of a local region, we estimate each abundance map with a low-
rank constraint. To effectively impose the low-rank constraint
without missing details, we introduce a reweighted nuclear norm
to estimate the low-rankness of abundance maps [52]. Applying
the reweighted nuclear norm for the rth abundance map Er , we
get

∥Er∥wr ,∗ =

∑
i

wr,iσr,i(Er ),

where wr,i are nonnegative weighting coefficients, and σr,i(Er )
denotes the ith singular value of Er . With the weighting vector,
the weighted nuclear norm treats the individual singular val-
ues differently and promotes the sparsity on the singular values
[51,53].
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.3. Model and algorithm

Based on NTF, we formulate our model by adding the end-
ember independence constraint and the low-rank approxima-

ion. Thus, the proposed model becomes

min
E,C

1
2
∥Y −

R∑
r=1

Er ◦ cr∥2
F +

δ

2
∥1I×J − EDT

∥
2
F

+
λ1

2
∥C. ∗ W∥

2
F + λ2

R∑
r=1

∥Er∥wr ,∗

s.t. E ≥ 0, C ≥ 0,

(5)

here E = [E1, . . . , ER], C = [c1, . . . , cR], D = [D1, . . . ,DR],
i ∈ RJ×J , (i = 1, 2, . . . , R), is an identity matrix.
We now solve (5) by the augmented multiplicative algorithm,

imilarly as in [54]. We introduce an auxiliary variable U for E, so
he objective function is modified as

min
E,C,U

1
2
∥Y −

R∑
r=1

Er ◦ cr∥2
F +

δ

2
∥1I×J − EDT

∥
2
F

+
λ1

2
∥C · ∗W∥

2
F + λ2

R∑
r=1

∥Ur∥wr ,∗

s.t. E ≥ 0, C ≥ 0, Er = Ur .

(6)

ubstituting constraints into the problem (6), we obtain the La-
range function

L(E, C,U) =
1
2
∥Y −

R∑
r=1

Er ◦ cr∥2
F +

δ

2
∥1I×J − EDT

∥
2
F

+
λ1

2
∥C · ∗W∥

2
F + λ2

R∑
r=1

∥Ur∥wr ,∗ +
µ

2
∥E − U∥

2
F

+ Tr(Γ E) + Tr(ΦC),

(7)

where Γ and Φ are Lagrange multipliers for each nonnegative
variable in (6), and µ > 0 is a penalty parameter.

For the E-subproblem, removing the terms that are not related
to E in (7), we slove the following minimization problem

min
E

1
2
∥Y(1) − M1ET

∥
2
F +

δ

2
∥1I×J − EDT

∥
2
F +

µ

2
∥E − U∥

2
F , (8)

where M1 = D⊙̄C. Considering the convexity of the problem
(8) and the Karush-Kuhn–Tucker (KKT) conditions, when the
problem (8) reaches its optimal value, we have

YT
(1)M1 − EMT

1M1 + δ(1I×J − EDT )D + µ(E − U) − Γ = 0,
Γ . ∗ E = 0.

(9)

According to (9), the update rule for E is obtained

E(t+1)
=E(t). ∗ (YT

(1)M1 + δ1I×JD + µU)
./(δE(t)DTD + E(t)MT

1M1 + µE(t)).
(10)

For the C-subproblem, we get

C(t+1)
= argmin

C

1
2
∥Y(3) − M2CT

∥
2
F +

λ1

2
∥C. ∗ W∥

2
F + Tr(ΦC),

(11)

here M2 = [(E1
⨀

D1)1L · · · (ER
⨀

DR)1L]. Similarly in the E-
subproblem, the solution of the C-subproblem is

C(t+1)
= C(t). ∗ (YT

(3)M2)./(C(t)MT
2M2 + λ1C(t)W(t)). (12)

And W(t)
= [w(t)

1 , . . . ,w(t)
R ], w(t)

i is the ith column in W(t) and
updated by

w(t)
= 1./(BF(c(t−1)) + η), (13)
i i

5

where η is small value, c(t−1)
i is the ith column in C(t−1), and ./

denotes element-wise division.
Due to the existence of the low-rank constraint on Ur , we

divide U into R submatrices, where each one is with the same size
as Er . Recall that ∥E−U∥

2
F =

∑R
r=1 ∥Er −Ur∥

2
F , the U-subproblem

is transformed to R subproblems, each of which is

U(t+1)
r = argmin

Ur

µ

2
∥Er − Ur∥

2
F + λ2∥Ur∥wr ,∗. (14)

efore solving Ur subproblems, we introduce some definitions.
iven a matrix X, rank(X) = j, the singular value decomposition

(SVD) of X is

SVD(X) = P̃Diag(δ1, . . . , δj)Q̃,

here δ = (δ1, . . . , δj) denotes singular values of X. The singular
value shrinkage operator shr(., τ ) on X is defined as

shr(X, τ ) = P̃Diag(max{δ − τ , 0})Q̃. (15)

Then, the solution of Eq. (14) is denoted as

(t+1)
r = shr(E(t+1)

r − U(t)
r ,

λ2

µ
wr ), (16)

where wr is the weighting vector, its ith entry wr,i =
1

δr,i+ϵ
,

= 1, . . . , v, δr,i is the ith singular value of E(t+1)
r −U(t)

r . According
to the above analysis, we summarize the corresponding algorithm
to solve EIC-NTF in Algorithm 1. Here, we briefly present the
computational complexity analysis of Algorithm 1. According to
Algorithm 1, each iteration mainly contains three updating steps
in the following.

(1) According to the update rule of E in (10), the number of
multiplication operations is RJ(5I + IJL + 3IJ + JLRL + IJLRJ).

(2) According to the update rule of C in (12), the number of
multiplication operations is RL(4 + IJ + IJR).

(3) According to the update rule of U in (16), the number of
multiplication operations is (IRJ)2.

herefore, at each iteration, the computational complexity of
IC-NTF is O(IJ2R2L + ILR2J3 + IJLR2

+ I2R2J2).
According to theoretic results from [55], a limit point of the

equence {E(t),U(t),U(t)
} is a local minima, then the limit point

ust meets the KKT conditions. However, as said in [56,57], it is
ot clear if the limit point obtained by the multiplicative iterative
lgorithm satisfies the KKT conditions. In addition, due to the
on-convexity of EIC-NTF and the use of the reweighting matrix
in the update rule of C, it is hard to guarantee that the Lagrange

unction L is convergent. Nevertheless, it is worth mentioning
hat, despite the convergence is not theoretically guaranteed, EIC-
TF exhibits a stable convergence behavior in our experiments in
ection 4.4.

Algorithm 1: EIC-NTF.
Input: An HSI cube Y ∈ RI×J×L;

The parameters δ, λ1, λ2 and µ.
The number of endmembers R.

Initialization: E(0), C(0),W(0),U(0)
r = E(0)

r for r = 1, . . . , R.
Repeat:

Update E(t+1) by (10)
Update C(t+1) by (12)
Update W(t+1) by (13)
Update U(t+1)

r by (16)
Until termination condition is met.
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. Synthetic data experiments

In this section, several synthetic and real-world experiments
re conducted to illustrate the unmixing performance of our
roposed method. Besides, we compare EIC-NTF with some state-
f-the-art unmixing algorithms, NMF [19], L1/2-NMF [22], TV-
SNMF [27], MCSNMF [29], MV-NTF [34], and MV-NTF-TV [35].
ll tests are implemented on the platform of Windows 10 and
ATLAB (R2019a) with an Intel Core i9-9900K, 3.60 GHz, and 32
B RAM.

.1. Experimental settings

Performance Measurement: To measure the unmixing per-
ormance, we choose spectral angle distance (SAD) and root mean
quare error (RMSE) as indices. The SAD evaluates the dissimilar-
ty of the rth endmember signature ĉr and its estimated signature
r , which is defined as

ADr = arccos
(

cTr ĉr
∥cr∥2∥ĉr∥2

)
.

he RMSE measures the error between the real abundance map
ˆ r of rth endmember and its estimated map Er , which is defined
s

MSEr =

(
1
N

∥Er − Êr∥
2
F

) 1
2

,

here N = I × J is the number of pixels in the HSI. Gener-
lly, a lower value of SAD and RMSE denote a better unmixing
erformance [34].
Data Generation: The generation of synthetic data includes

wo steps: endmember selection and abundance generation. To
emonstrate the unmixing performance of EIC-NTF, we select the
ollowing two data cubes.

DC1: For the simulated data cube 1 (DC1), we choose six pure
ndmembers (Carnallite, Ammonio-jarosite, Almandine, Brucite,
xinite, and Chlonte) from the USGS library as spectral matrix
[38], which has been shown in Fig. 2. For abundance genera-

ion, we adopt a modified strategy in [35], which contains the
ollowing steps

1. Generate an HSI, whose size is z2×z2, and it is composed of
R endmembers. And divide it into z2 blocks. Each of these
blocks contains z × z pixels.

2. Given a mixing level θ , we select two endmembers from
above six endmembers randomly to fill each pixel in a
region and set the corresponding fractions be θ and 1 − θ ,
respectively.

3. The image is processed using a (2z + 1) × (2z + 1) mean
filter to generate mixed pixels.

4. We reset the proportions of all endmember in each pixel
so that the abundance of each pixel satisfies the ASC con-
straint.

earrange the generated abundance, we get E. With these steps,
clean HSI will be obtained according to LMM. Finally, the scene

s contaminated by adding zero-mean white Gaussian noise with
he signal to noise ratio (SNR) defined as follows

NR = 10 log10
∥Y∥

2
F

∥α∥
2
F
,

here Y represents a synthetic HSI data with some endmembers
nd α is added with white noise.
DC2: For the simulated data cube 2 (DC2), we adopt a synthetic

ata cube with a size of 128 × 128, which has been widely used
n many unmixing methods [58,59]. This data cube contains five
6

endmembers with 431 bands, the corresponding true fractional
abundances for each of the five endmembers are shown in Fig. 10.
In Fig. 9(a), we show the 90th band of DC2.

Initialization: In the following experiments, random initial-
ization is utilized to initialize E and C. Specifically, C is initialized
by setting their entries to random values in the interval [0, 1].
And we initialize E using the strategy similar to the generation
of abundance. The initialization of other comparing algorithms is
the same as our initialization.

4.2. Experiments on DC1

Parameter Analysis: In the proposed model, there are four pa-
rameters: δ, λ1, λ2, and µ. As both λ2 and µ control the strictness
f the low-rank constraint, we only analyze the influence of δ, λ1,
nd µ. To select the optimal parameters, we generate DC1 with
= 8, R = 6, β = 0.8, and SNR = 30 dB to conduct the following

experiments.
(1) The Influence of δ: Setting λ1 = 2, λ2 = 1, and µ = 0.001,

we test SADs and RMSEs when δ is selected from {0.1, 0.5, 1, 2,
3, 4}. Fig. 4(a) shows the performance of our method to δ in terms
of SAD and RMSE. According to Fig. 4(a), both SAD and RMSE are
stable when δ = 2, 3, 4, which are the best results. Therefore, we
fix δ = 3 in the following experiments.

(2) The Influence of λ1: Recall that parameter λ1 controls
the contribution of endmember independence constraint. Here,
Fig. 4(b) shows SADs and RMSEs when λ1 is selected from {0.1,
0.5, 1, 2, 3, 4} with δ = 2, λ2 = 1, and µ = 0.001, According
to Fig. 4(b), when λ1 = 2, 3, 4, both SAD and RMSE are the best
results. Therefore, we fix λ1 = 3 in the following experiments.

(3) The Influence of µ: In Eq. (7), µ > 0 is a penalty pa-
rameter, which has an influence on the low-rank approxima-
tion. Fig. 4(c) shows SADs and RMSEs when µ is selected from
{0.001, 0.01, 0.1, 1, 5} with δ = 2, λ1 = 3, and λ2 = 1. According
to Fig. 4(c), when µ = 0.1, both SAD and RMSE are the best
results. Therefore, we fix µ = 0.1 in the following experiments.

Conclusively, in the following experiments, we set δ = 3, λ1 =

3, and µ = 0.1.
(4) The Influence of the Endmember Independence Constraint:
To illustrate the effectiveness of the endmember indepen-

dence constraint, we measure the unmixing performance of EIC-
NTF under different values of λ1 on DC2. In Fig. 5, we present the
estimated endmembers obtained by EIC-NTF and EIC-NTF with
λ1 = 0 on DC2. From Fig. 5, EIC-NTF provides more similar
estimated endmembers to the references than EIC-NTF with λ1 =

0 for endmembers 1 to 5.
Performance in different cases: In this part, we compare the

seven methods in different cases on DC1.
(1) Performance under different noise levels: This experiment

aims to measure the unmixing performance under different noise
levels for seven different algorithms. The DC1 is generated with
z = 8, R = 6, and θ = 0.8, then corrupted by noise with SNR =

{20 dB, 25 dB, 30 dB, 35 dB, 40 dB}. Fig. 6(a) presents all algo-
rithms’ unmixing performance in terms of SAD and RMSE under
different noise levels. According to Fig. 6(a), with the noise level
increase, the values of SAD for these seven methods increase.
Unmixing performances of NMF-based methods are more stable
in terms of SAD. MCSNMF obtains better RMSEs than MV-NTF
under different noise levels. The proposed method obtains the
best SAD and RMSE for all noise levels.

(2) Performance under Different Mixing Levels: In this exper-
iment, we discuss the unmixing performance of seven methods
under different mixing levels. The mixing level depends on the
parameter θ , i.e., a larger θ implies a smaller mixing level. Select
θ from the set {0.5, 0.6, 0.7, 0.8, 0.9}, we generate the DC1 with
z = 8, R = 6, and SNR = 30 dB. In Fig. 6(b), we show SADs
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Fig. 4. Performance of EIC-NTF on DC1 in terms of SAD and RMSE with respect to different parameters. (a) δ. (b) λ1 . (c) µ.
Fig. 5. References and estimated endmember curves by EIC-NTF with different values of λ1 for DC2. From left to right: endmembers 1 to 5.
Fig. 6. Comparison of different unmixing methods with respect to different cases.
Table 1
Means and deviations of SAD and RMSE of different algorithms on DC2.

NMF L1/2-NMF TV-RSNMF MCSNMF MV-NTF MV-NTF-TV EIC-NTF

End 1 0.3624±5.62% 0.3522±5.56% 0.2629±5.28% 0.2270±5.36% 0.2224±4.35% 0.2194±4.22% 0.1007±4.95%

End 2 0.2937±6.28% 0.2858±5.89% 0.0634±7.17% 0.0608±6.98% 0.11136±4.81% 0.1356±4.95% 0.0576±6.64%

End 3 0.2092±4.42% 0.2123±4.52% 0.1933±8.26% 0.1854±7.63% 0.1259±6.41% 0.1175±6.55% 0.1034±3.75%

End 4 0.1890±6.19% 0.1792±6.32% 0.0343±1.44% 0.1810±2.35% 0.1372±0.93% 0.1191±1.30% 0.0081±0.79%

End 5 0.1010±6.44% 0.0961±6.31% 0.1515±3.39% 0.1325±2.58% 0.1794±7.11% 0.1741±8.58% 0.1494±1.38%

Mean 0.2310±3.28% 0.2259±3.26% 0.1261±3.55% 0.1916±3.64% 0.1557±2.47% 0.1511±2.56% 0.0838±2.12%

RMSE 0.2002±3.39% 0.2004±3.15% 0.1763±2.01% 0.2493±2.12% 0.1763±2.14% 0.1701±2.16% 0.1346±2.01%
7
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Fig. 7. References and estimated spectral curves by different unmixing algorithms on DC2. From left to right: endmembers 1 to 5.
Fig. 8. Convergence curves of EIC-NTF for (top row) DC1 and (bottom row) DC2 .
nd RMSEs for seven methods under different mixing levels. From
ig. 6(b), the higher the mixing levels are, the worse the unmixing
esults for these comparing methods are. In terms of SAD and
MSE, the proposed method is better than others under different
ixing levels.
(3) Performance under different image sizes: This experiment

s to measure seven methods under different image sizes. We
hoose the image size from {49×49, 64×64, 81×81, 100×100},
8

set R = 6, θ = 0.8, and SNR = 30 dB to generate the DC1.
SADs and RMSEs for comparing methods with different image
sizes are shown in Fig. 6(c). From Fig. 6(c), seven methods behave
worst when the size is 81 × 81 and behave best when the size
is 64 × 64 in terms of SAD. NMF and L1/2-NMF obtain similar
results to SAD and RMSE. Under different image sizes, EIC-NTF
outperforms the other six approaches.
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Table 2
Means and standard deviations of SAD on Jasper Ridge data and Urban data.

Jasper Ridge data

Algorithm NMF L1/2-NMF TV-RSNMF MCSNMF MV-NTF MV-NTF-TV EIC-NTF

Tree 0.2230±3.13% 0.2405±2.39% 0.2461±3.43% 0.2080±2.39% 0.2231±1.31% 0.2232±2.61% 0.2109±2.30%

Water 0.2273±3.32% 0.2329±2.71% 0.1380±1.23% 0.3668±1.23% 0.1743±4.83% 0.1743±2.78% 0.1411±1.84%

Soil 0.3073±3.36% 0.3064±3.21% 0.2300±4.72% 0.1177±4.72% 0.1794±5.15% 0.1799±4.82% 0.1891±3.24%

Road 0.2040±1.82% 0.1959±2.41% 0.1961±3.12% 0.1556±3.12% 0.1907±1.23% 0.1910±2.74% 0.1370±2.79%

Mean 0.2423±3.51% 0.2439±3.31% 0.2070±2.56% 0.2170±2.56% 0.1918±1.27% 0.1921±2.64% 0.1695±4.40%

Urban data

Algorithm NMF L1/2-NMF TV-RSNMF MCSNMF MV-NTF MV-NTF-TV EIC-NTF

Tree 0.1246±3.45% 0.1167±3.31% 0.1804±2.65% 0.1694±2.96% 0.1286±4.34% 0.1252±3.12% 0.0643±2.91%

Grass 0.2405±3.80% 0.2172±2.65% 0.1205±4.12% 0.1205±2.20% 0.1322±3.59% 0.1314±3.15% 0.1177±1.52%

Roof 0.4148±2.47% 0.4089±1.98% 0.3795±3.66% 0.3559±1.19% 0.3180±3.77% 0.3151±2.44% 0.3038±1.18%

Asphlt 0.3461±3.82% 0.3332±2.36% 0.1179±2.73% 0.1172±1.38% 0.2676±3.67% 0.2407±5.68% 0.1930±3.89%

Mean 0.2815±2.71% 0.2744±2.31% 0.1987±1.95% 0.1907±1.71% 0.2120±3.95% 0.2018±5.82% 0.1797±1.37%
I
C
t

Fig. 9. The false-color images for DC2, Jasper Ridge data, and Urban data.
Particularly, the bands of 90, 50, 90 are selected.

4.3. Experiments on DC2

We now study the performance of EIC-NTF and the compared
lgorithms on DC2. We adopt 20 trials for each method and
how the means and deviations of SAD and RMSE of different
lgorithms in Table 1. From Table 1, EIC-NTF obtains the lowest
AD for the endmembers 1 to 4, L1/2-NMF achieves the best SAD
ith respect to the endmember 5. In conclusion, EIC-NTF obtains
he best mean SAD and the lowest RMSE.

To see unmixing performance visibly, we show the estimated
ndmember signatures in Fig. 7 and the corresponding abundance
aps in Fig. 10. According to Fig. 7, the spectral curves for the
ndmember 5 estimated by NMF-based methods are closer to
he reference than other methods. The spectral curves for the
ndmembers 1 to 4 estimated by EIC-NTF are closer to the ref-
rences, which is consistent with the results in Table 1. From
ig. 10, NMF-based methods recover the most outline of the
bundances, MV-NTF and MV-NTF-TV fail to separate the abun-
ance maps corresponding to the endmembers 1 to 3. For the
stimated abundance maps corresponding to the endmember 1,
he comparing six methods do not retrieve the information, while
IC-NTF recovers the most information of the abundance map.
n addition, EIC-NTF estimates most information of all abundance
aps corresponding to the five endmembers.

.4. Convergence analysis

The goal of this experiment is to numerically analyze the
onvergence of EIC-NTF. To this end, Fig. 8 plots the curves of
9

the relative error (RE) and the Lagrange function value versus the
iteration number on DC1 with the size of 64 × 64, SNR = 30 dB,
and θ = 0.8 and DC2. The RE is defined as follows:

RE =
|L(E(t), C (t),U (t)) − L(E(t+1), C (t+1),U (t+1))|

L(E(t), C (t),U (t))
.

From Fig. 8, the convergence curves of EIC-NTF tend to be stable
practically.

5. Real-world data experiments

In this section, we conduct Real-World Data Experiments on
Jasper Ridge data set and Urban data set to evaluate the perfor-
mance of the proposed method. These two data sets are utilized
widely [60,61]. The initialization strategy and parameter settings
are the same as the synthetic data experiments.

5.1. Jasper Ridge Data Set

Jasper Ridge Data Set contains 512 × 614 pixels with 224
bands, and each band covers wavelength ranging from 0.38 to
2.5 µm. This data is generated by the Airborne Visible/Infrared
maging Spectrometer (AVIRIS) over the Jasper Ridge in central
alifornia, USA [62]. Since it is difficult to get the ground truth for
he HSI, we consider a 100 × 100-pixel sub-image. Due to dense
water vapor and atmospheric effects, we remove the channels 1-
3, 108-112, 154-166, and 220-224 and remain 198 channels. We
set this data include four endmembers: road, soil, water, and tree.
In Fig. 9(b), we show the 50th band of Jasper Ridge data set.

In Table 2, the SAD results of the seven unmixing methods
are presented. From Table 2, we see that EIC-NTF achieves the
best SAD for the endmember road. MCSNMF estimates the end-
members tree and soil better, but fails to the endmember water.
Furthermore, Figs. 11 and 12 show the endmember signatures
and the corresponding abundance maps estimated by the seven
methods. By Fig. 11, the spectral curves for the endmembers soil
and tree estimated by MCSNMF are closer to the references. For
the endmember road, the result obtained by EIC-NTF is closer
to reference. According to Fig. 12, even abundance maps esti-
mated by NMF and L1/2-NMF remain most information in terms
of the endmembers soil and tree, there exist some regions that
correspond to the other endmembers. MV-NTF and MV-NTF-TV

achieve the outline of each abundance map, but miss some details
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Fig. 10. References and estimated abundance maps by different unmixing algorithms on DC2 for endmembers 1 to 5.
Fig. 11. References and estimated spectral curves by different unmixing algorithms for road, soil, tree, and water on Jasper Ridge data set.
for the endmembers road and soil. EIC-NTF achieves competitive
unmixing performance compared with the other six unmixing
approaches on this data set, especially for the endmembers road
and water.
10
5.2. HYDICE Urban Data Set

Urban data set is one of the most widely used hyperspectral
data used in the hyperspectral unmixing study, which is collected
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Fig. 12. References and estimated abundance maps by different unmixing algorithms for road, soil, tree, and water on Jasper Ridge data.
Fig. 13. References and estimated spectral curves by different unmixing algorithms for asphalt, grass, roof, and tree on Urban data.
by the Hyperspectral Digital Imagery Collection Experiment (HY-
DICE) in an urban area [63]. This image has 307 × 307 pixels
and 210 bands, whose wavelength ranging from 0.4 to 2.5 µm.
Due to dense water vapor and atmospheric effects), we remain
162 bands. In this experiment, we assume that Urban data is
composed of 4 endmembers: asphalt, grass, roof, tree. In Fig. 9(c),
we show the 90th band of Urban data set.

We show the SAD results tested by the comparing methods
in Table 2. In Table 2, EIC-NTF achieves the best SAD for the
endmembers tree, grass, and roof, MCSNMF obtains the best SAD
for the endmember asphalt. In addition, Figs. 13 and 14 show the
11
endmember signatures and the corresponding abundance maps
estimated by seven methods, respectively. By Fig. 13, the spectral
curves for the endmember tree estimated by NTF-based meth-
ods are closer to the references compared with the NMF-based
methods. For MV-NTF and MV-NTF-TV, the estimated endmem-
ber signatures of asphalt and roof are similar, which means the
incomplete separation of the mixed pixels. EIC-NTF method with
the endmember independence constraint avoids this problem,
and the estimated endmembers signatures of asphalt and roof
are more accurate. According to Fig. 14, abundance maps of roof
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Fig. 14. References and estimated abundance maps by different unmixing algorithms for asphalt, grass, roof, and tree on Urban data.
btained by NMF-based methods remain more details compar-
ng with the MV-NTF-based methods, but include some regions
elonging to other abundance maps. Abundance maps of grass
nd tree obtained by MV-NTF and MV-NTF-TV are closer to ref-
rences comparing with the NMF-based methods. However, these
ethods generate some noise in each abundance map and miss
ome details. Compared with the above six unmixing approaches,
bundance maps obtained by EIC-NTF are closer to references
nd smoother. In general, EIC-NTF obtains better unmixing results
omparing with the other six methods.

. Conclusion

In this paper, we propose an unmixing algorithm named end-
ember independence constrained hyperspectral unmixing via
onnegative tensor factorization (EIC-NTF). To alleviate the im-
act of highly correlated spectral signatures, EIC-NTF introduces
n endmember independence constraint on endmembers and a
ow-rank constraint on each abundance map. EIC-NTF relieves the
ffect of the highly correlated spectral signatures from the aspect
f endmembers and abundance maps with these two constraints.
o solve the proposed model, an augmented multiplicative algo-
ithm is proposed to obtain updated rules. Experimental results
n both synthetic data and real-world data demonstrate the
ffectiveness of our algorithm. Especially, real-data experiments
lso show the advantages of our method in remaining details
f abundance maps over the other two NTF-based approaches.
owever, our unmixing results exist some regions that are not
ctually presented in references in some cases. In the future, addi-
ional potential property from abundance maps and endmember
ignatures will be considered.
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