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Abstract. We propose iterative thresholding algorithms based on the iter-
ated Tikhonov method for image deblurring problems. Our method is similar
in idea to the modified linearized Bregman algorithm (MLBA) so is easy to
implement. In order to obtain good restorations, MLBA requires an accurate
estimate of the regularization parameter ↵ which is hard to get in real applica-
tions. Based on previous results in iterated Tikhonov method, we design two
nonstationary iterative thresholding algorithms which give near optimal results
without estimating ↵. One of them is based on the iterative soft thresholding
algorithm and the other is based on MLBA. We show that the nonstationary
methods, if converge, will converge to the same minimizers of the stationary
variants. Numerical results show that the accuracy and convergence of our
nonstationary methods are very robust with respect to the changes in the pa-
rameters and the restoration results are comparable to those of MLBA with
optimal ↵.

1. Introduction. We consider the problem of finding f 2 RM in the system

(1) g = Kf + e,

where g 2 RN is given, e 2 RN is the noise and K 2 RN⇥M , N  M , is an ill-
conditioned matrix. Such problem arises in many practical problems in science and
engineering [3, 43, 49, 29, 36]. For image deblurring problems, K in (1) can simply
be a blurring operator or be written as K = ADT , where A is a blurring matrix
and DT is a wavelet or tightframe synthesis operator [13, 7]. In the latter case, f
will be the wavelets or tightframe coe�cients of the original image.
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Due to the ill-conditioning of K, to find an estimation of the solution f , it is
necessary to resort to a regularization method [48, 18]. The following iterative soft
thresholding algorithm (ISTA) was proposed independently from several authors
[14, 32, 33, 20, 21]. We consider here the formulation in [21]:

(2) fn = Sµ(f
n�1 +K⇤(g �Kfn�1)),

where the nonlinear operator Sµ is defined component-wise by

(3) [Sµ(g)]i = Sµ(gi),

with Sµ the soft-thresholding function

Sµ(x) = sgn(x) (|x|� µ)
+

.

In [21] it was proven that, under the assumption that kKk < 1, the iteration (2)
converges to a minimizer of

(4) �µ(f) = kKf � gk2 + 2µkfk
1

,

where k · k denotes the `2-norm. Since the convergence in general is slow, many
improvements are proposed in literature to accelerate the convergence, see [1, 22, 40]
and references therein.

A new fast algorithm is the modified linearized Bregman algorithm introduced
in [8]. It is derived in a di↵erent way, by considering the constraint minimization

(5) min
f

{kfk
1

: Kf = g}.
The method we propose in this paper is also derived by considering the same min-
imization (5). If f is a solution of (5), it is the only intersection point of the
`
1

-ball B = {x : kxk
1

 kfk
1

} and the hyperplane P = {x : Kx = g}. Since
both B and P are convex, the intersection can be determined by alternate pro-
jections onto convex sets as proposed in [12]. The projection onto P is obtained
by x̂ = x + K⇤(KK⇤)�1(g � Kx), while the projection onto B requires the soft-
thresholding. Since K is ill-conditioned, one can replace (KK⇤)�1 by the regular-
ized inverse (KK⇤ + ↵I)�1, where ↵ > 0 is the regularization parameter and I is
the identity operator. This results in our method:

(6) fn = Sµ(f
n�1 +K⇤(KK⇤ + ↵I)�1(g �Kfn�1)).

We remark that the iteration inside Sµ is what is called iterated Tikhonov itera-

tion, see [29]. Thus we name our method iterated Tikhonov thresholding algorithm

(ITTA). Following the analysis in [21], we can prove that it converges to a mini-
mizer of

kKf � gk2
(KK⇤

+↵I)�1 + 2µkfk
1

,

where kxk2P = hx, Pxi for any positive definite matrix P .
We will see that our method (6) is very similar to the modified linearized Bregman

algorithm (MLBA), and requires the same computational cost at each iteration.
The quality of the restorations of the two methods are comparable. We will see
that both methods are very sensitive to the choice of ↵. If ↵ is slightly o↵ the
optimal one, the quality of the restorations can deteriorate quickly, see Figures 1
and 2 in Section 5. For practical problems, it may be di�cult to obtain the optimal
↵. Since our method (6) involves an iterated Tikhonov step, well-known results
for choosing optimal ↵ in iterated Tikhonov method, such as those in [34], can be
applied here. We apply the strategy in [34] to both ITTA in (6) and MLBA to
obtain two nonstationary algorithms. Numerical results show that the resulting
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nonstationary algorithms provide the solution with near optimal ↵. Hence there is
no need to estimate the optimal ↵ in our algorithms.

The paper is organized as follows. In Section 2 we recall the classical iterated
Tikhonov method and some convergence results. In Section 3 we derive our method
ITTA, provide a convergence analysis and investigate its relationship with MLBA.
In Section 4 we propose nonstationary version for both ITTA and MLBA and prove
that the resulting methods, if converge, will converge to the same minimizers of the
stationary variants. Numerical examples are given in Section 5 to show that our
nonstationary methods are robust against ↵. Concluding remarks are in Section 6.

2. Iterated Tikhonov method. A classical approach for computing a regularized
solution of (1) is to solve the minimization problem minf kKf � gk2 by iterative
methods but stop before it converges using, for instance, the discrepancy principle
[42, 36]. One example is the Landweber method:

(7) fn = fn�1 + ⌧K⇤(g �Kfn�1), 0 < ⌧ < 2/kK⇤Kk.
It has the nice property that a precise estimation of the stopping iteration is not cru-
cial [39, 47, 29, 36]. However, it converges slowly. Its convergence can be accelerated
by a proper choice of ⌧ or by adding a regularization preconditioner [46]. Alterna-
tively, one can use other iterative methods to get fast convergence. For example,
conjugate gradient for normal equations [29] can be used with similar regularization
feature. In this paper we consider the iterated Tikhonov method [29].

The iterated Tikhonov method can be defined as an iterative refinement of the
Tikhonov method [38, 37, 31]. The classical Tikhonov method computes the solution
f̂ = (K⇤K + ↵I)�1K⇤g of the following minimization problem

min
f

kKf � gk2 + ↵kfk2, ↵ > 0.

Refining the previous approximation by solving the error equation with the Tikhonov
method, we obtain the iterated Tikhonov method:

(8) fn = fn�1 +K⇤(KK⇤ + ↵I)�1(g �Kfn�1).

The previous iteration (8) can be interpreted in many di↵erent ways: (i) it is a pre-
conditioned Landweber method with regularization preconditioner (K⇤K + ↵I)�1

and ⌧ = 1 (see [46]), (ii) it is equivalent to the Levenberg-Marquardt method ap-
plied to minf

1

2

kKf � gk2 (see [35]), and (iii) it is a gradient descent method for
minf

1

2

kKf � gk2
(KK⇤

+↵I)�1 . The method is characterized by the semiconvergence

property: the iteration starts to converge to the true solution for small values of n,
but then when n becomes large, it diverges. If ↵ is chosen properly, it can converge
to the true solution in few iterations. If ↵ is too large the convergence slows down,
while if ↵ is too small the noise is already amplified at the early iterations and the
computed solution will not be accurate.

It can be di�cult to get a good ↵ in practice, so in [6], the authors proposed the
nonstationary iterated Tikhonov method:

(9) fn = fn�1 +K⇤(KK⇤ + ↵nI)
�1(g �Kfn�1), f0 = 0.

Here ↵n is changing at each iteration n. Below we give some results on the conver-
gence of (9) for the noise free case, i.e., e = 0 in (1). Define

(10) �n :=
n
X

j=1

↵�1

j .
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Theorem 2.1 ([6]). The method (9) converges to the solution f?
of K⇤Kf = K⇤g

if and only if

(11) lim
n!1

�n = 1.

Theorem 2.2 ([34]). If f? = (K⇤K)⌫w for some ⌫ > 0 with some w in the domain

of (K⇤K)⌫ , and if there exists a constant c⌫ > 0 such that

(12) ↵�1

n  c⌫�n�1

,

then kfn � f?k  c⌫�
�⌫
n kwk.

A classical choice for ↵n is the successive geometric sequence

(13) ↵n = ↵
0

qn�1, 0 < q < 1.

In this case �n in (10) satisfies �n � q1�n/↵
0

and (12) holds with c⌫ = 1/q as
shown in [34]. Therefore, from Theorem 2.2 we have kfn�f?k = O(q⌫n) and hence
we have a linear rate of convergence. The sequence (13) provides a convergence
faster than the stationary case where ↵n = ↵ for all n 2 N. In the latter case,
�n = n/↵ and (12) holds with c⌫ = 1/(n � 1). Therefore, from Theorem 2.2
kfn � f?k = O(n�(⌫+1)) and hence we only have a sublinear rate of convergence.

For perturbed data, i.e., e 6= 0 in (1), it was proven in [34] that the nonstationary
iterated Tikhonov (9) with the ↵n defined in (13) converges again faster than the
stationary method (8). Moreover, numerical experiments in [26] show that the
nonstationary method avoids an accurate estimation of optimal ↵ which may not
be readily available in real applications. Indeed, ↵

0

in (13) has only to be chosen
large enough (an over-estimation of the optimal ↵), while q controls how fast the
sequence decreases.

3. Iterated Tikhonov with thresholding. The ISTA iteration in (2) can be
viewed as a Landweber method (7) combined with a soft-thresholding, hence it
inherits the slow convergence of Landweber method. As mentioned in the last
section, the Landweber part can be accelerated in several ways, e.g.,

fn = Sµ(f
n�1 + ⌧nK⇤(g �Kfn�1)),

with a proper choice of ⌧n [1, 22, 40]. For instance, the choice

⌧n =
kK⇤(g �Kfn�1k2

kKK⇤(g �Kfn�1)k2 ,

is equivalent to replacing the inner Landweber iteration with one step of conjugate
gradient for normal equation. Following this idea, another possible strategy to
speed up the ISTA iteration (2) is to replace the inner Landweber step with a faster
convergent iterative regularization method. In this paper we propose to replace it
by the iterated Tikhonov method in (8). We thus arrive at our iterated Tikhonov
thresholding algorithm (ITTA):

(14) fn = Sµ(f
n�1 +K⇤(KK⇤ + ↵I)�1(g �Kfn�1)).
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3.1. Convergence analysis of ITTA. To obtain the convergence of ITTA in (14),
we first review the convergence of ISTA which was given in [21] for general Hilbert
spaces. Here for simplicity, we rewrite the lemma for finite dimensional spaces.

Lemma 3.1 ([21], Theorem 3.1). Let K 2 RN⇥M
, N  M with kKk

2

< 1. Then

the sequence of iterates (2), with Sµ defined in (3) and f0

arbitrarily chosen in RM
,

converges to a minimizer of the functional

(15) �µ(f) = kKf � gk2 + 2µkfk
1

.

If Null(K) = {0}, then the minimizer f?
of �µ is unique, and every sequence of

iterates fn
converges to f?

(i.e., kfn � f?k ! 0), regardless of the choice of f0

.

Defining P = (KK⇤ + ↵I)�1 and using P 1/2K and P 1/2g to replace K and g in
Lemma 3.1, respectively, we have the following convergence theorem for ITTA.

Theorem 3.2. Let K 2 RN⇥M
, N  M and assume Sµ as defined in (3). Then

for any given ↵ > 0, the sequence of iterates in (14) with f0

arbitrarily chosen in

RM
converges to a minimizer of the functional

(16) �µ,↵(f) = kKf � gk2
(KK⇤

+↵I)�1 + 2µkfk
1

.

If Null(K) = {0}, then the minimizer f?
of �µ,↵ is unique, and every sequence of

iterates fn
converges to f?

(i.e., kfn � f?k ! 0), regardless of the choice of f0

.

Proof. For any given ↵ > 0, denote P = (KK⇤+↵I)�1 for convenience. To employ
Lemma 3.1 for the matrix P 1/2K, we first show that kP 1/2Kk

2

< 1. Clearly, we
have

K⇤(KK⇤ + ↵I)�1 = (K⇤K + ↵I)�1K⇤.

This equation, combining with the definition of P , gives

kP 1/2Kk2 = ⇢
⇣

(P 1/2K)⇤(P 1/2K)
⌘

= ⇢(K⇤PK)  kK⇤PKk
=

�

�K⇤(KK⇤ + ↵I)�1K
�

� =
�

�(K⇤K + ↵I)�1K⇤K
�

� < 1,(17)

where ⇢(·) is the spectral radius. Thus replacing K and g by P 1/2K and P 1/2g in
Lemma 3.1, respectively, we find that the sequence of iterates (2) becomes

fn = Sµ

⇣

fn�1 + (P 1/2K)⇤
⇣

P 1/2g � P 1/2Kfn�1

⌘⌘

= Sµ

�

fn�1 +K⇤P
�

g �Kfn�1

��

= Sµ

�

fn�1 +K⇤(KK⇤ + ↵I)�1

�

g �Kfn�1

��

, n = 1, 2, . . . .

This is exactly the iteration (14). Moreover, it converges to a minimizer of the
functional

�µ,↵(f) =
�

�

�

P 1/2Kf � P 1/2g
�

�

�

2

+ 2µkfk
1

= kKf � gk2
(KK⇤

+↵I)�1 + 2µkfk
1

.

According to Remark 2.4 in [21], if {��} is an orthonormal basis for RM and P
is diagonalizable in {��}, then the surrogate function in (16) with P -norm can be
reformulated as the surrogate function in (15) with `

2

norm, but at a di↵erent scale
µ. Unfortunately, for the image deblurring problems considered in this paper, P is
not diagonalizable by {��} which are piecewise linear B-spline framelets.
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3.2. Relationship with modified linearized Bregman iteration. Our pro-
posed ITTA in (14) is similar to the modified linearized Bregman algorithm in [8].
To see this clearly, we first recall that linearized Bregman algorithm is a method
designed to solve (5) by using the iteration

(18)

⇢

zn = zn�1 +K⇤ �g �Kfn�1

�

,
fn = �Sµ(zn),

where z0 = f0 = 0; see [45, 50]. The convergence of linearized Bregman algorithm
is given in [10, 11] and we restate it as follows.

Lemma 3.3 ([10], Theorem 2.4). Assume K 2 RN⇥M
, N  M , be any surjective

matrix and 0 < � < 1

kKK⇤k . Then the sequence {fn} generated by (18) converges

to the unique solution of

(19) min
f2RM

{µkfk
1

+
1

2�
kfk2 : Kf = g},

i.e., limn!1 kfn � f?
µk = 0, where f?

µ is the unique solution of (19). Furthermore,

lim
µ!1

kf?
µ � f

1

k = 0,

where f
1

is the solution of (5) that has the minimal `
2

norm among all the solutions

of (5).

A modified linearized Bregman algorithm (MLBA) for frame-based image de-
blurring was proposed and analyzed in [8]. Its corresponding convergence, given in
the next lemma, is followed from similar analysis in [10, 11].

Lemma 3.4 ([8], Theorem 3.2). Assume P is a symmetric positive definite ma-

trix and let 0 < � < 1

kKPK⇤k . Then the sequence {fn} generated by the modified

linearized Bregman algorithm:

(20)

⇢

zn = zn�1 +K⇤P
�

g �Kfn�1

�

,
fn = �Sµ(zn),

converges to the unique solution of

(21) min
f2RM

{µkfk
1

+
1

2�
kfk2 : f = argmin kKf � gk2P }.

Furthermore, as µ ! 1, the limit of this iteration is the solution of

(22) min
f2RM

{kfk
1

: f = argmin kKf � gk2P }

that has a minimum `
2

norm among all the solutions of (22).

We note that the matrix P in Lemma 3.4 serves as a preconditioner to accelerate
the convergence. Often P is chosen as (KK⇤ + ↵I)�1 and thus kKPK⇤k < 1
(see (17)); so that we can fix � = 1. In this case the modified linearized Bregman
iteration (20) becomes

(23)

⇢

zn = zn�1 +K⇤(KK⇤ + ↵I)�1(g �Kfn�1),
fn = Sµ(zn).

Clearly, MLBA in (23) is similar to ITTA in (14). The only di↵erence is in the first
part of the first equation in (23) where we replace fn�1 in (14) by zn�1 in (23). As
a result, both methods have the same computational cost. The only small overhead
of algorithm (23) is that it requires two vectors for zn�1 and fn�1, while ITTA in
(14) can be implemented with only one vector.
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Finally, we observe that ITTA (14) is modified from ISTA (2) exactly like MLBA
(23) is modified from the linearized Bregman iteration (18).

4. Nonstationary methods. Numerical results in Section 5 will show that the
regularization parameter ↵ a↵ects not only the speed of convergence but also the
accuracy of the restoration in both ITTA in (14) and MLBA in (23), see Figures 1
and 2 in Section 5. In practice, it could be di�cult to have a good estimation
of ↵. Recall in Section 2 one idea to get the optimal result in iterated Tikhonov
method is to use a geometric decreasing sequence of ↵n, such as those defined in
[34]. Applying the same idea to both ITTA in (14) and MLBA in (23), we get two
nonstationary methods:

1. Nonstationary iterated Tikhonov thresholding algorithm (NITTA):

(24) fn = Sµ

�

fn�1 +K⇤(KK⇤ + ↵nI)
�1

�

g �Kfn�1

��

, ↵n > 0.

2. Nonstationary modified linearized Bregman algorithm (NMLBA):

(25)

⇢

zn = zn�1 +K⇤ (KK⇤ + ↵nI)
�1

�

g �Kfn�1

�

,
fn = Sµ(zn),

↵n > 0.

We will see in the numerical results that the nonstationary methods are much more
robust against the parameter ↵ than their stationary variants.

In the following, we derive convergence limits of both nonstationary methods
(24) and (25) under the following assumption.

Assumption 4.1. The sequence of regularization parameters ↵n > 0 satisfies

lim
n!1

↵n = ↵̄, 0 < ↵̄ < 1.

Notice that Assumption 4.1 implies (11) and hence the nonstationary iterated
Tikhonov method (9) with such {↵n} will converge according to Theorem 2.1.

4.1. Convergence limit of nonstationary iterated Tikhonov thresholding
algorithm (NITTA). In this subsection, we derive the convergent limit of NITTA
in (24) if it converges.

Theorem 4.2. Let K 2 RN⇥M
, N  M , be any matrix and assume Sµ as defined

in (3). With Assumption 4.1, if the sequence {fn} of iterates (24) in NITTA

converges, then its limit is a minimizer of the ITTA functional in (16) with ↵ = ↵̄:

�µ,↵̄(f) = kKf � gk2
(KK⇤

+↵̄I)�1 + 2µkfk
1

.

If Null(K) = {0}, then the minimizer f?
of �µ,↵̄ is unique, and every convergent

sequence {fn} converges to f?
(i.e., kfn � f?k ! 0).

Proof. Assume fn converges to f?. From (24) and Assumption 4.1, as n ! 1, we
have

(26) f? = Sµ

�

f? +K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

.

We now prove that f? is a minimizer of �µ,↵̄. Since �µ,↵̄ is convex, using the first-
order optimality condition of �µ,↵̄ we equivalently show that 0 2 @�µ,↵̄(f?), where
@ denotes the subdi↵erential. It is clear that

@�µ,↵̄(f
?) = 2K⇤(KK⇤ + ↵̄I)�1(Kf? � g) + 2µ@kf?k

1

.
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In the following we will prove 0 2 K⇤(KK⇤+ ↵̄I)�1(Kf?� g)+µ@kf?k
1

. It means
that for each index i, we need to show that

0 2 �

K⇤(KK⇤ + ↵̄I)�1(Kf? � g)
�

i
+ µ (@kf?k

1

)i

=
�

K⇤(KK⇤ + ↵̄I)�1(Kf? � g)
�

i
+ µ@|f?

i |.
This relation is established by considering three cases.

(i): If f?
i +

�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i
< �µ, then the definition of soft-

thresholding and (26) give

f?
i = Sµ

�

f?
i +

�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i

�

= f?
i +

�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i
+ µ < 0.

It follows that 0 =
�

K⇤(KK⇤ + ↵̄I)�1 (Kf? � g)
�

i
+ µ · (�1). Since f?

i < 0,
we have @|f?

i | = {�1}, and hence

0 2 �

K⇤(KK⇤ + ↵̄I)�1 (Kf? � g)
�

i
+ µ@|f?

i |.
(ii): If

�

�f?
i +

�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i

�

�  µ, then soft-thresholding and
(26) give

f?
i = Sµ

�

f?
i +

�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i

�

= 0.

Thus
�

�

�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i

�

�  µ. Let

p
0

= � 1

µ

�

K⇤(KK⇤ + ↵̄I)�1 (Kf? � g)
�

i
,

then |p
0

|  1 and 0 =
�

K⇤(KK⇤ + ↵̄I)�1 (Kf? � g)
�

i
+ µ · p

0

. It says that

0 2 ��

K⇤(KK⇤ + ↵̄I)�1 (Kf? � g)
�

i
+ µ · p, p 2 [�1, 1]

 

.

Since f?
i = 0, we have @|f?

i | = [�1, 1], and hence

0 2 �

K⇤(KK⇤ + ↵̄I)�1 (Kf? � g)
�

i
+ µ@|f?

i |.
(iii): The case where f?

i +
�

K⇤(KK⇤ + ↵̄I)�1 (g �Kf?)
�

i
> µ can be estab-

lished analogously as case (i), we therefore will omit it.

Combining cases (i), (ii) and (iii), we have established the result.
Moreover, if Null(K) = {0}, then kKf � gk2

(KK⇤
+↵̄I)�1 is strictly convex in f .

Thus �µ,↵̄ is strictly convex so that it has a unique minimizer.

We note that under Assumption 4.1, NITTA in (24), if converges, will converge
to the same minimization functional as ITTA with ↵ = ↵̄.

We also note that the condition limn!1 ↵n = ↵̄ > 0 is only su�cient and it is
stronger than the necessary and su�cient condition in (11). Nevertheless, similarly
to the decreasing geometric sequence (13), we choose

(27) ↵n = ↵
0

qn�1 + ↵̄, 0 < ↵̄ < ↵
0

, 0 < q < 1,

in our numerical tests such that limn!1 ↵n = ↵̄ > 0. The parameters ↵
0

, q and ↵̄
in (27) do not need to be estimated accurately to give the best results, see Section
5. They can be fixed easily by keeping in mind that ↵

0

should be large enough, ↵̄
should be small (a good regularization parameter for the method (14) has to be in
the interval [↵̄,↵

0

]), and q controls how fast ↵n approximates the limiting value ↵̄.
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4.2. Convergence limit of nonstationary modified linearized Bregman al-
gorithm (NMLBA). We now derive the convergence limit of NMLBA defined in
(25). Define the Bregman distance as

Dp
J(u, v) = J(u)� J(v)� hu� v, pi,

where J is a convex function, p 2 @J(v) is a subgradient in the subdi↵erential of J
at the point v, see, e.g., [5] for details. The linearized Bregman algorithm is: given
f0 = p0 = 0,
(

fn = argminf2RM

n

1

2�

�

�f � �

fn�1 � �K⇤ �Kfn�1 � g
��

�

�

2

+ µDpn�1

J (f, fn�1)
o

,

pn = pn�1 � 1

µ�

�

fn � fn�1

�� 1

µK
⇤ �Kfn�1 � g

�

.

If J(f) = kfk
1

, with a change of variable for p, the iteration can be rewritten as the
compact form (18); see [11]. We note that its convergence analysis has been stated
in Lemma 3.3.

For the nonstationary case, define

(28) K̃n = (KK⇤ + ↵nI)
� 1

2K, g̃n = (KK⇤ + ↵nI)
� 1

2 g, ↵n > 0.

Given f0 = p0 = 0, we iterate
(29)
8

<

:

fn =argminf2RM

⇢

1

2�

�

�

�

f�
⇣

fn�1 ��K̃⇤
n

⇣

K̃nf
n�1 � g̃n

⌘⌘

�

�

�

2

+µDpn�1

J (f, fn�1)

�

,

pn = pn�1 � 1

µ� (f
n � fn�1)� 1

µK̃
⇤
n(K̃nf

n�1 � g̃n).

Then similarly we obtain the compact form of the iterations:

(30)

(

zn = zn�1 + K̃⇤
n

⇣

g̃n � K̃nf
n�1

⌘

,

fn = �Sµ(zn).

We note from (28) that this iteration with � = 1 is exactly NMLBA in (25). More-
over, using a similar analysis as in [10, 11] for linearized Bregman iteration and
Assumption 4.1, we will derive the convergence limit of NMLBA in the following.

First, we give two lemmas. For the first equation of (29), we have the following
result from [50], see also Lemma 3.1 in [10].

Lemma 4.3 ([50]). Assume that kK̃⇤
nK̃nk < 1/�. Then

kK̃nf
n � g̃nk2 +

✓

1

�
� kK̃⇤

nK̃nk
◆

kfn � fn�1k2  kK̃nf
n�1 � g̃nk2.

Lemma 4.4. Assume Assumption 4.1 holds. Let P = (KK⇤ + ↵̄I)�1

. If {fn}
generated by (30) converges, then

(31) lim
n!1

K⇤P (g �Kfn) = 0.

Consequently, we have limn!1 K⇤(g �Kfn) = 0.

Proof. From the assumption that {fn} converges, we obtain that {K⇤P (g�Kfn)}
also converges. Let limn!1 K⇤P (g � Kfn) = d, we now prove that d = 0 by
contradiction.

Assume d 6= 0. Let Pn = (KK⇤ + ↵nI)�1, then K̃n and g̃n defined in (28) can

be rewritten as K̃n = P
1
2
n K and g̃n = P

1
2
n g. From the first equation of (30), for any
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positive integer l, we have

zn+l � zn =
l

X

j=1

K̃⇤
n+j(g̃n+j � K̃n+jf

n+j�1)

=
l

X

j=1

K̃⇤
n+j(g̃n+j � K̃n+jf

n) +
l

X

j=1

K̃⇤
n+jK̃n+j(f

n � fn+j�1)

=
l

X

j=1

K⇤Pn+j(g �Kfn) +
l

X

j=1

K⇤Pn+jK(fn � fn+j�1).

By the assumption that {fn} converges and Assumption 4.1, we have

lim
n!1

Pn = P, lim
n!1

kfn+1�fnk = 0, lim
n!1

K⇤Pn+j(g�Kfn) = lim
n!1

K⇤P (g�Kfn).

Thus,

lim
n!1

(zn+l � zn) = l · lim
n!1

K⇤P (g �Kfn) = ld.

Therefore, there exists an n
0

such that for all n > n
0

, kzn+l � zn � ldk  1. Hence

(32) kzn+lk � kzn + ldk � 1 � lkdk � kznk � 1.

Notice that fn = Sµ(zn) and {fn} converges, hence {zn} is bounded, i.e., there
exists a c > 0, kznk  c, 8n. However, if we choose dl = (2c+2)/kdke which is finite
because d 6= 0, then from (32) we have kzn+lk � c+1. We arrive at a contradiction.

Notice that K⇤P = (K⇤K + ↵̄I)�1K⇤ and (K⇤K + ↵̄I)�1 is symmetric positive
definite, then from limn!1 K⇤P (g � Kfn) = 0 we get limn!1 K⇤(g � Kfn) =
0.

Following the analysis in [8], we derive the convergence limit of NMLBA. We note
that the uniqueness of the solution of (21) is guaranteed by the strict convexity of
the object function of (21).

Theorem 4.5. With Assumption 4.1, if the sequence {fn} generated by (25) con-
verges, then its limit is the unique solution of (21) with � = 1 and P = (KK⇤ +
↵̄I)�1

. More precisely, let f?
µ be the unique solution of

(33) min
f2RM

{µ kfk
1

+
1

2
kfk2 : f = argmin kKf � gk2

(KK⇤
+↵̄I)�1},

then limn!1
�

�fn � f?
µ

�

� = 0. Furthermore, limµ!1
�

�f?
µ � f

1

�

� = 0, where f
1

is the

solution of (22) that has the minimal `
2

norm among all the solutions of (22).

Proof. We first prove that {fn} converges to f?
µ. Let limn!1 fn = f̃ , we now show

that f̃ = f?
µ. Let Pn = (KK⇤ + ↵nI)�1. From (30) with z0 = 0, we obtain

zn = zn�1 +K⇤Pn(g �Kfn�1) =
n
X

j=1

K⇤Pj(g �Kf j�1) = K⇤
n
X

j=1

Pj(g �Kf j�1).

Define wn =
Pn

j=1

Pj(g�Kf j�1). Then zn = K⇤wn. Decompose wn = wn
Ran(K)

+
wn

Ker(K

⇤
)

, where wn
Ran(K)

is in the range of K and wn
Ker(K

⇤
)

is in the kernel of K⇤.
It is clear that

(34) zn = K⇤wn
Ran(K)

.
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It is easy to check that K⇤ is one-to-one from Ran(K) to RM and zn is bounded.
Hence wn

Ran(K)

is bounded, i.e., kwn
Ran(K)

k  C for all n.

Notice that fn = Sµ(zn) = argmin 1

2

kzn�fk2+µkfk
1

, thus zn�fn 2 @µkfnk
1

,
where @ denotes the subdi↵erential. Rewrite zn = fn + (zn � fn), and define

H(f) = µkfk
1

+
1

2
kfk2.

We have zn 2 @H(fn). Thus, by the definition of subdi↵erential and (34), we have

H(fn)  H(f?
µ)� hf?

µ � fn, zni = H(f?
µ)� hK(f?

µ � fn), wn
Ran(K)

i.
For the second term of the above equation and using the Cauchy-Schwarz inequality,
we get

�

�

�

hK(f?
µ � fn), wn

Ran(K)

i
�

�

�

 kK(f?
µ � fn)k · kwn

Ran(K)

k  CkK(f?
µ � fn)k.

From Lemma 4.4, we have limn!1 K⇤(g � Kfn) = 0. Thus, limn!1 Kfn =
g
Ran(K)

. Recall that f?
µ is the unique solution of (33), hence it satisfies K⇤PKf?

µ =
K⇤Pg and thus (K⇤K + ↵̄I)�1K⇤(g � Kf?

µ) = 0. Consequently, we have Kf?
µ =

g
Ran(K)

. Therefore, limn!1 kK(f?
µ � fn)k = 0 and

lim
n!1

�

�

�

hK(f?
µ � fn), wn

Ran(K)

i
�

�

�

= 0.

It follows that H(f̃) = limn!1 H(fn)  H(f?
µ). The uniqueness of f?

µ forces

f?
µ = f̃ .
The proof of the remaining part of the theorem, i.e., as µ ! 1, {f?

µ} converges
to the solution of (22) that has the minimal `

2

norm among all the solutions of
(22), is exactly the same as in Theorem 4.4 of [11]. We therefore omit it here.

We also note that with � = 1 and Assumption 4.1, if NMLBA in (25) converges,
then both nonstationary and stationary modified linearized Bregman iteration con-
verge to a minimizer of (33).

5. Numerical results for image deblurring. In this section, we apply the algo-
rithms we derived in the previous section to deblur images corrupted by Gaussian
noise. We use the tight-frame synthesis approach [8, 21] and consider K = ADT

where A is a blurring operator and DT is a tight-frame synthesis operator. The
redundancy of the tight frame leads to robust signal representations in which par-
tial loss of the data can be tolerated without adverse e↵ects, see [23, 16, 17]. The
tight-frame we used in our tests is the piecewise linear B-spline framelets given in
[8, 9]. Replacing K by ADT in our ITTA in (14), we obtain

(35) fn = Sµ

�

fn�1 +DA⇤(AA⇤ + ↵I)�1(g �ADT fn�1)
�

.

Similarly, the MLBA in (23) becomes

(36)

⇢

zn = zn�1 +DA⇤(AA⇤ + ↵I)�1(g �ADT fn�1),
fn = Sµ(zn).

The nonstationary variants of the two methods are obtained by replacing ↵ with ↵n

in (35) and (36). Therefore the methods (35), (36) and their nonstationary variants
all have the same computational cost. In the tests, we compare all four methods.
We refer to [8, 9] for a large experimentation that compares MLBA (i.e. iteration
(36)) with other recent methods, including the iterative soft thresholding algorithm.
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In the experiment, we assume periodic boundary conditions on all images, and
hence A can be diagonalized by 2D Fast Fourier Transforms (FFTs) and (AA⇤ +
↵I)�1 is easily computable. In fact, the matrix vector product with the matrix
A⇤(AA⇤ + ↵I)�1 requires only 2 FFTs. For other boundary conditions associated
to fast trigonometric transforms that could be used as well, see [44, 25] and the
references therein.

Our tests were done by using MATLAB 7.10.0 (R2010a) on an HP laptop with
Intel(R) Core(TM) i5 CPU 2.27 GHz and 2 GB memory. The floating-point pre-
cision is 10�16. The initial guess of each algorithm is set to be the zero vector.
According to [8], we stop all methods using the discrepancy principle, i.e., stop at
the first iteration n such that kADT fn � gk  (1+ 10�15)kek, or when the number
of iterations reached 300. Here e is the error defined in (1). Note that for an image
with N pixels, kek2 = N�2, where �2 is the noise variance which can be estimated
by using the median rule [41] in practice. The accuracy of the solution is measured
by the PSNR value which is defined by 20 log

10

255⇥N
kf� ˜fk2

with f and f̃ being the

original and restored images, respectively.
For the stationary methods (35) and (36), the optimal parameters µ† and ↵† are

chosen by trial and error. For their nonstationary variants, we will use the same µ†

but with the following decreasing sequences of ↵n replacing ↵ in (35) and (36):

1. nonstationary iterated Tikhonov thresholding (NITTA): ↵n = ↵
0

⇥0.95n�1+
10�15,

2. nonstationary modified linearized Bregman (NMLBA): ↵n = ↵
0

⇥ 0.9n�1 +
10�15.

Note that these choices of ↵n satisfy Assumption 4.1. For each test, we tried four
di↵erent choice of ↵

0

: ↵
0

= 2↵†, 10↵†, 100↵† and 0.5 to show the robustness of our
methods with respect to ↵

0

. We will see that the value of ↵
0

does not a↵ect the
accuracy of the restoration but only the number of iterations.

We have performed five tests.
Example 5.1. The true image is the 256⇥ 256 Cameraman image. It is distorted
by a 15 ⇥ 15 Gaussian blur with standard deviation 2 and a white Gaussian noise
with standard deviation � = 2, 5, 10.
Example 5.2. Same Cameraman image is blurred by a 7⇥ 7 disk kernel generated
by MATLAB command fspecial(‘disk’,3) and then corrupted by a Gaussian
white noise with standard deviation � = 2, 5, 10.
Example 5.3. The 256 ⇥ 256 Bridge image is corrupted by a 9 ⇥ 15 motion
kernel generated by fspecial(‘motion’,15,30) and a Gaussian white noise with
standard deviation � = 2, 5, 10.
Example 5.4. The 256 ⇥ 256 Boat image is blurred by fspecial(‘average’,9)

and degraded by a Gaussian white noise with standard deviation � = 3.
Example 5.5. The 256⇥256 Peppers is corrupted by a 15⇥15 Gaussian kernel with
standard deviation 2 and a Gaussian white noise with standard deviation � = 7.

In Tables 1–4, we report the restoration results by all four methods. We see that
the value of ↵ in the stationary methods ITTA and MLBA a↵ects not only the
speed of the convergence but also the accuracy of the restoration. In fact if ↵ is
underestimated, the PSNR can drop significantly. If ↵ is overestimated, the PSNR
also drops while the number of iterations required for convergence increases rapidly.
Thus for these two stationary methods, ↵ should be carefully chosen.
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Method � = 2 � = 5 � = 10

PSNR(↵†
) Itr. PSNR(↵†

) Itr. PSNR(↵†
) Itr.

MLBA ↵†
MLBA/10 23.23 21 22.03 10 21.3 8

↵†
MLBA 25.49(0.02) 33 24.73(0.04) 16 24.04(0.08) 14

↵†
MLBA ⇥ 10 25.13 87 24.42 48 23.74 46

NMLBA ↵0 = ↵†
MLBA ⇥ 2 25.23 28 24.71 16 24.03 14

↵0 = ↵†
MLBA ⇥ 10 25.48 38 24.65 24 23.93 22

↵0 = ↵†
MLBA ⇥ 100 25.49 56 24.55 42 23.86 41

↵0 = 0.5 25.49 44 24.62 25 23.96 19

ITTA ↵†
ITTA/10 24.42 8 24.15 2 23.31 2

↵†
ITTA 25.47(0.05) 117 24.65(0.2) 89 23.89(0.3) 53

↵†
ITTA ⇥ 10 24.66 300 23.15 300 21.89 300

NITTA ↵0 = ↵†
ITTA ⇥ 2 25.37 36 24.53 28 23.84 25

↵0 = ↵†
ITTA ⇥ 10 25.41 62 24.53 57 23.82 54

↵0 = ↵†
ITTA ⇥ 100 25.38 102 24.48 101 23.78 99

↵0 = 0.5 25.41 62 24.54 32 23.83 22

Table 1. Restoration results for di↵erent algorithms for Example 5.1

For the nonstationary methods, the PSNR values are very robust with respect
to the parameter ↵

0

. For di↵erent ↵
0

, the changes in PSNR is always within 0.1dB
except for one case (NMLBA in Table 1 for � = 2). Moreover, the best PSNR
values they achieve are very close to the optimal one obtained by their stationary
counterparts. In fact, for all test cases, the di↵erences between the best PSNR’s
from MLBA and NMLBA are always within 0.1dB. We note that NMLBA performs
better than NITTA both in terms of accuracy and speed and hence NMLBA is the

best method among the four if one has no idea what the best ↵ should be.

Method � = 2 � = 5 � = 10

PSNR(↵†
) Itr. PSNR(↵†

) Itr. PSNR(↵†
) Itr.

MLBA ↵†
MLBA/10 20.30 16 16.62 8 19.65 8

↵†
MLBA 27.70(0.04) 34 25.61(0.06) 17 24.51(0.2) 20

↵†
MLBA ⇥ 10 26.85 153 25.12 65 24.24 93

NMLBA ↵0 = ↵†
MLBA ⇥ 2 26.81 26 25.54 16 24.50 18

↵0 = ↵†
MLBA ⇥ 10 27.70 37 25.53 26 24.47 29

↵0 = ↵†
MLBA ⇥ 100 27.71 58 25.45 46 24.42 49

↵0 = 0.5 27.70 39 25.56 25 24.50 19

ITTA ↵†
ITTA/10 25.76 2 24.13 2 23.11 2

↵†
ITTA 27.50(0.1) 108 25.46(0.3) 69 24.35(0.6) 46

↵†
ITTA ⇥ 10 24.93 300 23.37 300 21.92 300

NITTA ↵0 = ↵†
ITTA ⇥ 2 27.26 31 25.29 27 24.26 24

↵0 = ↵†
ITTA ⇥ 10 27.33 60 25.28 57 24.28 55

↵0 = ↵†
ITTA ⇥ 100 27.27 104 25.24 102 24.24 99

↵0 = 0.5 27.32 48 25.29 24 24.13 10

Table 2. Restoration results for all algorithms for Example 5.2

To further analyze the di↵erence between the stationary and nonstationary meth-
ods, we plot ↵ against PSNR of the solution and iteration number for stationary
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Method � = 2 � = 5 � = 10

PSNR(↵†
) Itr. PSNR(↵†

) Itr. PSNR(↵†
) Itr.

MLBA ↵†
MLBA/10 18.61 7 15.93 7 17.10 5

↵†
MLBA 23.68(0.02) 11 21.75(0.07) 15 20.60(0.2) 13

↵†
MLBA ⇥ 10 23.12 50 21.39 76 20.39 68

NMLBA ↵0 = ↵†
MLBA ⇥ 2 23.64 12 21.71 15 20.59 13

↵0 = ↵†
MLBA ⇥ 10 23.58 22 21.64 25 20.54 24

↵0 = ↵†
MLBA ⇥ 100 23.58 43 21.63 46 20.50 44

↵0 = 0.5 23.56 30 21.69 23 20.57 14

ITTA ↵†
ITTA/10 22.87 2 20.67 2 18.38 2

↵†
ITTA 23.63(0.07) 36 21.67(0.2) 32 20.53(0.3) 14

↵†
ITTA ⇥ 10 21.26 300 19.83 300 19.22 300

NITTA ↵0 = ↵†
ITTA ⇥ 2 23.61 24 21.64 23 20.53 18

↵0 = ↵†
ITTA ⇥ 10 23.54 53 21.57 53 20.48 48

↵0 = ↵†
ITTA ⇥ 100 23.47 97 21.54 98 20.46 93

↵0 = 0.5 23.57 47 21.63 27 20.53 15

Table 3. Restoration results for all algorithms for Example 5.3

Method Example 5.4 Example 5.5

PSNR(↵†
) Itr. PSNR(↵†

) Itr.

MLBA ↵†
MLBA/10 21.10 7 22.39 10

↵†
MLBA 25.96(0.04) 14 24.95(0.07) 17

↵†
MLBA ⇥ 10 25.60 77 24.64 52

NMLBA ↵0 = ↵†
MLBA ⇥ 2 25.95 14 24.93 16

↵0 = ↵†
MLBA ⇥ 10 25.90 25 24.86 24

↵0 = ↵†
MLBA ⇥ 100 25.81 45 24.79 43

↵0 = 0.5 25.81 26 24.89 22

ITTA ↵†
ITTA/10 25.15 2 24.19 2

↵†
ITTA 25.77(0.2) 48 24.84(0.3) 56

↵†
ITTA ⇥ 10 23.29 300 22.97 300

NITTA ↵0 = ↵†
ITTA ⇥ 2 25.64 26 24.74 25

↵0 = ↵†
ITTA ⇥ 10 25.65 57 24.74 54

↵0 = ↵†
ITTA ⇥ 100 25.57 101 24.64 98

↵0 = 0.5 25.65 30 24.73 22

Table 4. Restoration results for all algorithms for Examples 5.4
and 5.5

methods ITTA and MLBA, and ↵
0

against the same for nonstationary methods
NITTA and NMLBA for Example 5.1, see Figures 1 and 2. (The graphs for other
examples are similar so we omit them here.) The figures clearly illustrate that one
has to get a very good estimate of the optimal ↵ for the stationary methods while
↵
0

for the nonstationary methods can be chosen to be any reasonably large number.
In particular, ↵

0

= 0.5 can be a good choice for nonstationary methods for all the
examples.

In Figures 3–4, we give the restored images by all four methods with di↵erent
choices of ↵ and ↵

0

for Examples 5.2 and 5.4. (The images for other examples
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Figure 1. Plots of ↵ and ↵
0

against PSNR and iteration for Ex-
ample 5.1

show similar conclusion, so again we omit them here.) Clearly, nonstationary meth-
ods provide comparable restorations in visual quality to stationary methods with
optimal ↵†.

6. Conclusions. Combining iterated Tikhonov method with soft-thresholding we
obtain our iterated Tikhonov thresholding algorithm (ITTA) that has a very sim-
ilar form as the modified linearized Bregman iteration (MLBA). Inspired by the
results on nonstationary iterated Tikhonov we propose to vary the regularization
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Figure 2. Plots of ↵ and ↵
0

against PSNR and iteration for Ex-
ample 5.1

parameter ↵ in each iteration, and we arrive at the nonstationary version of these
two algorithms. We proved the convergence of ITTA and gave some convergence
properties of the nonstationary version of ITTA and MLBA under Assumption 4.1.
Numerical tests show that ITTA and MLBA are very sensible to the optimal choice
of ↵, while our proposed nonstationary versions do not require any accurate param-
eter estimation (e.g., ↵

0

= 0.5 is a good choice for image deblurring). In particular,
the nonstationary MLBA (NMLBA) is the best method among the four: it is robust
both in terms of accuracy and speed with respect to the choice of ↵

0

.
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(a) MLBA: ↵†
MLBA/10 (b) MLBA: ↵†

MLBA⇥10 (c) MLBA: ↵†
MLBA (d) NMLBA: ↵0 = 0.5

(e) ITTA: ↵†
ITTA/10 (f) ITTA: ↵†

ITTA ⇥ 10 (g) ITTA: ↵†
ITTA (h) NITTA: ↵0 = 0.5

Figure 3. Deblurring results for all four algorithms for Example
5.2 with � = 10

(a) MLBA: ↵†
MLBA/10 (b) MLBA: ↵†

MLBA⇥10 (c) MLBA: ↵†
MLBA (d) NMLBA: ↵0 = 0.5

(e) ITTA: ↵†
ITTA/10 (f) ITTA: ↵†

ITTA ⇥ 10 (g) ITTA: ↵†
ITTA (h) NITTA: ↵0 = 0.5

Figure 4. Deblurring results for all four algorithms for Example 5.4

In this paper we have investigated only the synthesis approach while a nonstation-
ary sequence of regularization parameters could be useful also for the analysis and
the balanced approaches, cf [9]. Moreover, the combination of iterated Tikhonov
with thresholding could be useful also for other kinds of convex constraints (e.g.
total variation) [24]. Concerning the applications, we point out that our proposal
does not depend on the particular problem of image deblurring considered in this
paper, so it could be applied also to multiresolution [4, 15, 16, 17, 28], inpainting
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[2, 7, 19, 30], etc. Finally, all methods investigated in this paper require solution of
a linear system with the coe�cient matrix KK⇤ +↵I which could be hard in some
applications. In such case, a preconditioning strategy should be considered where
K is replaced with an easily invertible approximation as in [27].
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