
Appendix: Other ADMM-MSD based algorithms

Similarly as SUnSAL-TV-MSD, we propose to apply MSD on other unmixing models, including the SUnSAL,
CLSUnSAL, ADSpLRU, and JSpBLRU models, and then name the resulting algorithms as CLSUnSAL-
MSD, CLSUnSAL-MSD, ADSpLRU-MSD, and JSpBLRU-MSD, respectively. In the following, we present
the pseudocode of each algorithm. To improve the readability, we first recall two functions, which will be
needed in the CLSUnSAL, ADSpLRU, and JSpBLRU based algorithms. Let vect-soft(·, ⌧) be a nonlinear
function defined by

vect-soft(x, ⌧) = x
max{kxk2 � ⌧, 0}

max{kxk2 � ⌧, 0}+ ⌧

for any vector x and ⌧ > 0. Let X = U⌃VT be the singular value decomposition (SVD) of X. Then the
singular value threshold operation SVT↵ on X is defined by

SVT↵(X) = Usoft(⌃,↵)VT , 8 ↵ > 0.

Appendix A SUnSAL-MSD

Consider the SUnSAL model
min
X

1

2
kAX � Yk2F + �kXk1,1 + ◆R+(X) (33)

where � � 0 is a regularization parameter. With variable replacement, we rewrite (33) as

min
X

1

2
kAX � Yk2F + �kVk1,1 + ◆R+(V)

s.t. X = V

and define a function L1 as

L1(X,A,V,D) =
1

2
kAX � Yk2F + �kVk1,1 + ◆R+(V) +

µ

2
kX � V � Dk2F

where µ > 0 is a penalty parameter. Then we propose to apply MSD and minimize L1(X,A,V,D) with
respect to X and V and update D at (k + 1)th iteration as the following framework:

8
>>>>>>>><

>>>>>>>>:

Xk+ 1
2 = argmin

X
L1(X,Ak,Vk,Dk)

[Xk+1,Ak+1, sk+1] = MSD(Xk+ 1
2 ,Ak, sk)

Dk+ 1
2 = Dk(sk+1, :)

Vk+1 = argmin
V

L1(Xk+1,Ak+1,V,Dk+ 1
2 )

Dk+1 = Dk+ 1
2 � Xk+1 + Vk+1.

Next we compute X, V, and D in detail.
• For Xk+ 1

2 subproblem, we consider the optimization model:

min
X

1

2
kAkX � Yk2F +

µ

2
kX � Vk � Dkk2F

27



and it is easy to obtain the solution

Xk+ 1
2 = ((Ak)TAk + µI)�1((Ak)TY + µ(Vk + Dk)).

• For Xk+1, Ak+1, and sk+1 subproblem, we apply MSD in Algorithm 1 on Xk and Ak, and sk, similarly
as in SUnSAL-TV-MSD. Then we update Dk+ 1

2 according to the obtained support set sk+1.
• For Vk+1 subproblem, we have

min
V

�kVk1,1 + ◆R+(V) +
µ

2
kXk+1 � V � Dk+ 1

2 k2F .

It follows that
Vk+1 = max(soft(Xk+1 � Dk+ 1

2 ,
�

µ
),0).

• Finally, we update Lagrange multiplier as

Dk+1 = Dk+ 1
2 � Xk+1 + Vk+1.

The estimated abundance matrix Ŵ is obtained with zero initialization and update Ŵ(sk+1, :) = Xk+1.
We summarize the above procedure in Algorithm 3.

Algorithm 3: Pseudocode of SUnSAL-MSD
Input: �2 RL⇥m and Y2 RL⇥N

Initialize: Ŵ = 0 2 Rm⇥N , A0 = �, V0, D0, s0 = {1, · · · ,m}, and set k = 0
Select parameters: �, µ, and ✏
Repeat

Compute Xk+ 1
2 = ((Ak)TAk + µI)�1((Ak)TY + µ(Vk + Dk))

Compute Xk+1, Ak+1, and sk+1 by Algorithm 1
Compute Dk+ 1

2 = Dk(sk+1, :)

Compute Vk+1 = max(soft(Xk+1 � Dk+ 1
2 , �

µ ),0)
Compute Dk+1 = Dk+ 1

2 � Xk+1 + Vk+1

until convergence
Update Ŵ(sk+1, :) = Xk+1

Output: Ŵ

Appendix B CLSUnSAL-MSD

We consider the optimization model

min
X

1

2
kAX � Yk2F + �kXk2,1 + ◆R+(X) (34)

where � � 0 is a regularization parameter. Rewrite (34) and we have

min
X

1

2
kV1 � Yk2F + �kV2k2,1 + ◆R+(V3)

s.t. AX = V1,X = V2,X = V3.

28



Define
L2(X,A,V,D) =

1

2
kV1 � Yk2F + �kV2k2,1 + ◆R+(V3)

+
µ

2
(kAX � V1 � D1k2F + kX � V2 � D2k2F + kX � V3 � D3k2F )

where µ > 0 is a penalty parameter with DT = [DT
1 ,D

T
2 ,D

T
3 ]

T and VT = [VT
1 ,V

T
2 ,V

T
3 ]

T . We propose to
apply MSD at each iteration according to the following framework

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Xk+ 1
2 = argmin

X
L2(X,Ak,Vk,Dk)

[Xk+1,Ak+1, sk+1] = MSD(Xk+ 1
2 ,Ak, sk)

Dk+ 1
2

1 = Dk
1 ,D

k+ 1
2

i = Dk
i (s

k+1, :), i = 2, 3 (35)

Vk+1 = argmin
V

L2(Xk+1,Ak+1,V,Dk+ 1
2 )

Dk+1
1 = Dk+ 1

2
1 � Ak+1Xk+1 + Vk+1

1

Dk+1
i = Dk+ 1

2
i � Xk+1 + Vk+1

i , i = 2, 3.

Next we consider each subproblem in detail.
• For Xk+ 1

2 subproblem, we have

min
X

kAkX � Vk
1 � Dk

1k2F + kX � Vk
2 � Dk

2k2F + kX � Vk
3 � Dk

3k2F .

It is easy to obtain that

Xk+ 1
2 = ((Ak)TAk + 2I)�1((Ak)T (Vk

1 + Dk
1) + Vk

2 + Dk
2 + Vk

3 + Dk
3).

• For Xk+1, Ak+1, and sk+1 subproblem, we apply MSD in Algorithm 1 on Xk, Ak, and sk. Then we
update D according to the support set sk+1.

• For Vk+1 subproblem, we equivalently divide it into three subproblems.

� For Vk+1
1 , we have

min
V1

1

2
kV1 � Yk2F +

µ

2
kAk+1Xk+1 � V1 � Dk+ 1

2
1 k2F .

It follows that
Vk+1

1 =
1

µ+ 1
(Y + µ(Ak+1Xk+1 � Dk+ 1

2
1 )).

� For Vk+1
2 , we get

min
V2

�kV2k2,1 +
µ

2
kXk+1 � V2 � Dk+ 1

2
2 k2F .

Its solution is
Vk+1

2 = vect-soft(Xk+1 � Dk+ 1
2

2 ,
�

µ
).

� For Vk+1
3 , we obtain

min
V3

◆R+(V3) +
µ

2
kXk+1 � V3 � Dk+ 1

2
3 k2F .

It is easy to calculate
Vk+1

3 = max(Xk+1 � Dk+ 1
2

3 ,0).

29



• Finally, we update Lagrange multiplier according to (35). The procedure is summarized in Algorithm 4.

Algorithm 4: Pseudocode of CLSUnSAL-MSD
Input: �2 RL⇥m and Y2 RL⇥N

Initialize: Ŵ = 0 2 Rm⇥N , A0 = �, V0, D0, s0 = {1, · · · ,m}, and set k = 0
Select parameters: �, µ, and ✏
Repeat

Compute Xk+ 1
2 = ((Ak)TAk + 2I)�1((Ak)T (Vk

1 + Dk
1) +Vk

2 + Dk
2 + Vk

3 + Dk
3)

Compute Xk+1, Ak+1, and sk+1 by Algorithm 1
Compute Dk+ 1

2
1 = Dk

1 , Dk+ 1
2

i = Dk
i (sk+1, :), i = 2, 3

Compute Vk+1
1 = 1

µ+1 (Y + µ(Ak+1Xk+1 � Dk+ 1
2

1 ))

Vk+1
2 = vect-soft(Xk+1 � Dk+ 1

2
2 , �

µ )

Vk+1
3 = max(Xk+1 � Dk+ 1

2
3 ,0)

Compute Dk+1
1 = Dk+ 1

2
1 � Ak+1Xk+1 + Vk+1

1

Dk+1
i = Dk+ 1

2
i � Xk+1 + Vk+1

i , i = 2, 3
until convergence
Update Ŵ(sk+1, :) = Xk+1

Output: Ŵ

Appendix C ADSpLRU-MSD

We reconsider the ADSpLRU model

min
X

1

2
kAX � Yk2F + �kZ � Xk1,1 + ⌧kXkb,⇤ + ◆R+(X) (36)

where � denotes the Hadamard product, � and ⌧ are nonnegative regularization parameters. Then, we
rewrite (36) as

min
X

1

2
kV1 � Yk2F + �kZ � V2k1,1 + ⌧kV3kb,⇤ + ◆R+(V4)

s.t. AX = V1,X = V2,X = V3,X = V4.

Let VT = [VT
1 ,V

T
2 ,V

T
3 ,V

T
4 ]

T and define

L3(X,A,V,D) =
1

2
kV1 � Yk2F + �kZ � V2k1,1 + ⌧kV3kb,⇤ + ◆R+(V4)

+
µ

2
(kAX � V1 � D1k2F + kX � V2 � D2k2F + kX � V3 � D3k2F + kX � V4 � D4k2F ).

30



where µ > 0 is a penalty parameter and DT = [DT
1 ,D

T
2 ,D

T
3 ,D

T
4 ]

T . The framework of ADSpLRU-MSD is
proposed as below

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Xk+ 1
2 = argmin

X
L3(X,Ak,Vk,Dk)

[Xk+1,Ak+1, sk+1] = MSD(Xk+ 1
2 ,Ak, sk)

Dk+ 1
2

1 = Dk
1 ,D

k+ 1
2

i = Dk
i (s

k+1, :), i = 2, 3, 4 (37)

Vk+1 = argmin
V

L3(Xk+1,Ak+1,V,Dk+ 1
2 )

Dk+1
1 = Dk+ 1

2
1 � Ak+1Xk+1 + Vk+1

1

Dk+1
i = Dk+ 1

2
i � Xk+1 + Vk+1

i , i = 2, 3, 4.

In the following, we compute each subproblem in detail.
• For Xk+ 1

2 subproblem, we consider

min
X

kAkX � Vk
1 � Dk

1k2F + kX � Vk
2 � Dk

2k2F + kX � Vk
3 � Dk

3k2F + kX � Vk
4 � Dk

4k2F .

This is a least squares problem and its solution is

Xk+ 1
2 =((Ak)TAk + 3I)�1((Ak)T (Vk

1 + Dk
1) + Vk

2 + Dk
2 + Vk

3 + Dk
3 + Vk

4 + Dk
4).

• For Xk+1, Ak+1, and sk+1 subproblem, we apply MSD in Algorithm 1 on Xk, Ak, and sk. Then we
update D according to the support set sk+1.

• For Vk+1 problem, notice that it can be divided it into four subproblems.

� For Vk+1
1 subproblem, we consider the optimization problem

min
V1

1

2
kV1 � Yk2F +

µ

2
kAk+1Xk+1 � V1 � Dk+ 1

2
1 k2F .

Simple calculation gives that

Vk+1
1 =

1

µ+ 1
(Y + µ(Ak+1Xk+1 � Dk+ 1

2
1 )).

� For Vk+1
2 subproblem, we have

min
V2

�kZk+1 � V2k1,1 +
µ

2
kXk+1 � V2 � Dk+ 1

2
2 k2F

and its solution is
Vk+1

2 = soft(Xk+1 � Dk+ 1
2

2 ,
�

µ
Zk+1)

where Zk+1 = [zk+1
ij ] with

zk+1
ij =

1

|(Xk+1 � Dk+ 1
2

2 )i,j |+ "

and " being a small constant to avoid singularities.

31



� For Vk+1
3 subproblem, we obtain

min
V3

⌧kV3kb,⇤ +
µ

2
kXk+1 � V3 � Dk+ 1

2
3 k2F

and its solution is
Vk+1

3 = SVT ⌧
µb(Xk+1 � Dk+ 1

2
3 )

where b = [b1, · · · , br] with

bi =
1

�i + "

and �i is the ith singular value of Xk+1 � Dk+ 1
2

3 .

� For Vk+1
4 subproblem, we have

min
V4

◆R+(V4) +
µ

2
kXk+1 � V4 � Dk+ 1

2
4 k2F

and clearly we obtain
Vk+1

4 = max(Xk+1 � Dk+ 1
2

4 ,0).

• The Lagrange multipliers are updated according to (37). Moreover, the procedures are summarized in
Algorithm 5.

Algorithm 5: Pseudocode of ADSpLRU-MSD
Input: �2 RL⇥m and Y2 RL⇥N

Initialize: Ŵ = 0 2 Rm⇥N , A0 = �, V0, D0, s0 = {1, · · · ,m}, and set k = 0
Select parameters: �, ⌧ , µ, and ✏
Repeat

Compute Xk+ 1
2 = (Ak(Ak)T + 3I)�1((Ak)T (Vk

1 + Dk
1) +Vk

2 + Dk
2 + Vk

3 + Dk
3 + Vk

4 + Dk
4)

Compute Xk+1, Ak+1, and sk+1 by Algorithm 1
Compute Dk+ 1

2
1 = Dk

1 , Dk+ 1
2

i = Dk
i (sk+1, :), i = 2, 3, 4.

Compute Vk+1
1 = 1

µ+1 (Y + µ(Ak+1Xk+1 � Dk+ 1
2

1 ))

Vk+1
2 = soft(Xk+1 � Dk+ 1

2
2 , �

µZk+1)

Vk+1
3 = SVT ⌧

µb(Xk+1 � Dk+ 1
2

3 )

Vk+1
4 = max(Xk+1 � Dk+ 1

2
4 ,0)

Compute Dk+1
1 = Dk+ 1

2
1 � Ak+1Xk+1 + Vk+1

1

Dk+1
i = Dk+ 1

2
i � Xk+1 + Vk+1

i , i = 2, 3, 4
until convergence
Update Ŵ(sk+1, :) = Xk+1

Output: Ŵ

32



Appendix D JSpBLRU-MSD

We consider the JSpBLRU model

min
X

1

2
kAX � Yk2F + �

JX

j=1

kXjkzj ,2,1 + ⌧kXkb,⇤ + ◆R+(X) (38)

where � and ⌧ are nonnegative regularization parameters, zj and b are nonnegative weighting coefficients,
which will be updated automatically. Rewrite (38) by some variable replacement and we obtain

min
X

1

2
kAX � Yk2F + �

JX

j=1

kV1,jkzj ,2,1 + ⌧kV2kb,⇤ + ◆R+(V3)

s.t. X = V1,X = V2,X = V3.

Define

L4(X,A,V,D) =
1

2
kAX � Yk2F + �

JX

j=1

kV1,jkzj ,2,1 + ⌧kV2kb,⇤ + ◆R+(V3)

+
µ

2
(kX � V1 � D1k2F + kX � V2 � D2k2F + kX � V3 � D3k2F )

where µ > 0 is a penalty parameter, DT = [DT
1 ,D

T
2 ,D

T
3 ]

T , and VT = [VT
1 ,V

T
2 ,V

T
3 ]

T . Then the framework
of JSpBLRU-MSD is proposed as below

8
>>>>>>>>><

>>>>>>>>>:

Xk+ 1
2 = argmin

X
L4(X,Ak,Vk,Dk)

[Xk+1,Ak+1, sk+1] = MSD(Xk+ 1
2 ,Ak, sk)

Dk+ 1
2

i = Dk
i (s

k+1, :), i = 1, 2, 3 (39)

Vk+1 = argmin
V

L4(Xk+1,Ak+1,V,Dk+ 1
2 )

Dk+1
i = Dk+ 1

2
i � Xk+1

i + Vk+1
i , i = 1, 2, 3.

In the following, we consider each step in detail.
• For Xk+ 1

2 subproblem, we have

min
X

1

2
kAkX � Yk2F +

µ

2
kX � Vk

1 � Dk
1k2F +

µ

2
kX � Vk

2 � Dk
2k2F +

µ

2
kX � Vk

3 � Dk
3k2F

and it is easy to get

Xk+ 1
2 =((Ak)TAk + 3µI)�1((Ak)TY + µ(Vk

1 + Dk
1 + Vk

2 + Dk
2 + Vk

3 + Dk
3)).

• Then we update Xk+1, Ak+1, and sk+1 according to Algorithm 1. Moreover, we update Dk+ 1
2 with

sk+1.
• For Vk+1 subproblem, we decouple it into three subproblems.

33



� For Vk+1
1 subproblem, we obtain

min
V1

�
JX

j=1

kV1,jkzj ,2,1 +
µ

2
kXk+1 � V1 � Dk+ 1

2
1 k2F .

Then we obtain the ith row of the jth column block of Vk+1
1 as

(Vk+1
1,j )[i] = vect-soft((Xk+1

j � Dk+ 1
2

1,j )[i],
�

µ
zij)

where Xk+1
j and Dk+ 1

2
1,j are the jth column blocks of Xk+1 and Dk+ 1

2
1 , respectively,

zij =
1

k(Xk+1
j � Dk+ 1

2
1,j )[i]k2 + "

and " is a small positive constant to avoid singularities.

� For Vk+1
2 subproblem, we have

min
V2

⌧kV2kb,⇤ +
µ

2
kXk+1 � V2 � Dk+ 1

2
2 k2F

with its solution
Vk+1

2 = SVT ⌧
µb(Xk+1 � Dk+ 1

2
2 ).

where b = [b1, · · · , br] with bi =
1

�i+" and �i is the ith singular value of Xk+1 � Dk+ 1
2

2 .

� For Vk+1
3 subproblem, we obtain

min
V3

◆R+(V3) +
µ

2
kXk+1 � V3 � Dk+ 1

2
3 k2F

which follows that
Vk+1

3 = max(Xk+1 � Dk+ 1
2

3 ,0).

• Finally, we update Lagrange multipliers according to (39) and summarize the procedures in Algorithm 6.

34



Algorithm 6: Pseudocode of JSpBLRU-MSD
Input: �2 RL⇥m and Y2 RL⇥N

Initialize: Ŵ = 0 2 Rm⇥N , A0 = �, V0, D0, s0 = {1, · · · ,m}, and set k = 0
Select parameters: �, ⌧ , µ, and ✏
Repeat
Compute Xk+ 1

2 = ((Ak)TAk + 3µI)�1((Ak)TY +µ(Vk
1 + Dk

1 + Vk
2 + Dk

2 + Vk
3 + Dk

3))
Compute Xk+1, Ak+1, and sk+1 by Algorithm 1
Compute Dk+ 1

2
i = Dk

i (sk+1, :), i = 1, 2, 3

Compute (Vk+1
1,j )[i] = vect-soft((Xk+1

j � Dk+ 1
2

1,j )[i], �
µzij)

Vk+1
2 = SVT ⌧

µb(Xk+1 � Dk+ 1
2

2 )

Vk+1
3 = max(Xk+1 � Dk+ 1

2
3 ,0)

Compute Dk+1
i = Dk+ 1

2
i � Xk+1 + Vk+1

i , i = 1, 2, 3
until convergence
Update Ŵ(sk+1, :) = Xk+1

Output: Ŵ

35


