Appendix: Other ADMM-MSD based algorithms

Similarly as SUnSAL-TV-MSD, we propose to apply MSD on other unmixing models, including the SUnSAL,
CLSUnSAL, ADSpLRU, and JSpBLRU models, and then name the resulting algorithms as CLSUnSAL-
MSD, CLSUnSAL-MSD, ADSpLRU-MSD, and JSpBLRU-MSD, respectively. In the following, we present
the pseudocode of each algorithm. To improve the readability, we first recall two functions, which will be
needed in the CLSUnSAL, ADSpLRU, and JSpBLRU based algorithms. Let vect-soft(-,7) be a nonlinear

function defined by
max{|[x|[> — 7,0}

vect-soft(x,7) = x
(x,7) max{||x||s — 7,0} + 7

for any vector x and 7 > 0. Let X = UXVT be the singular value decomposition (SVD) of X. Then the
singular value threshold operation SVT, on X is defined by

SVT,(X) = Usoft(X,a)V’, ¥V a > 0.

Appendix A SUnSAL-MSD

Consider the SUnSAL model 1
min o [AX = Y[E 4+ AX[l11 + ez (X) (33)

where A > 0 is a regularization parameter. With variable replacement, we rewrite (33) as
1
min §||AX = Y5 + MV + me (V)
s.t. X=V

and define a function £; as
1
£1(X,A,V.,D) = J[AX = Y[} + AVl + 24 (V) + 51X = V =D}

where p > 0 is a penalty parameter. Then we propose to apply MSD and minimize £;(X, A, V,D) with
respect to X and V and update D at (k + 1)th iteration as the following framework:

X2 = arg min £,(X, A", VE DY)

[XFH AR ] — MSD(XF 2, AR 6F)
DFE = DR(sHF1)1)

VL = arg m\i/n Ly (Xk'H, ALV, Dk+%)

DFL = Dkt _ xkt+1 4+ VR,

Next we compute X, V, and D in detail.
1
e For X**2 subproblem, we consider the optimization model:

N 2 1% k k2
min 7 A*X — Y[} + £X - v} - D}
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and it is easy to obtain the solution
XFE = (AF)T AR + )~ (AF)TY + u(VF + D)),

e For Xk+1, A]H'l, and s**1 subproblem, we apply MSD in Algorithm 1 on X* and Ak, and s*, similarly
as in SUnSAL-TV-MSD. Then we update DFt3 according to the obtained support set s**1.
e For Vi1 subproblem, we have

. 1
min A V|1 + g (V) + 5X5 = v = D3

It follows that A\
V1 = max(soft(X*1 — D*3 2 o).
W

e Finally, we update Lagrange multiplier as
Dkl — pht+3 _ kL Rt

The estimated abundance matrix W is obtained with zero initialization and update W (s5*1 ;) = X*+1,
We summarize the above procedure in Algorithm 3.

Algorithm 3: Pseudocode of SUnSAL-MSD
Input: € RL*™ and Ye REXN
Initialize: W =0 c RN A’ =& V° D’ & ={1,... m}, and set k=0
Select parameters: A, u, and €
Repeat
Compute X"*3 = (AMTAF 4+ 11)~1((AMTY + u(V* + DF))
Compute X1 A1 and s#+! by Algorithm 1
Compute DFt3 = DF(sh1 )
Compute V! = max(soft(X*** — D"t3, %), 0)
Compute D1 = DFtz — Xk 4 vkt
until convergence
Update W(s+t1 ;) = XF+!
Output: W

Appendix B CLSUnSAL-MSD

We consider the optimization model

min [ AX = Y[ + AX]l1 + en (X) (34)
where A > 0 is a regularization parameter. Rewrite (34) and we have

min %IIVl Y2 A Vallaa + e (V)

s.t. AX = Vl,X = VQ,X :Vg.
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Define )
L5(X,A,V,D) = §HVI — Y%+ A Va1 + trs(V3)

+ L(IAX = Vi = Dy} + |X = Va = D[} + |IX — V3 - Dy[[3)
where 1 > 0 is a penalty parameter with D7 = [D?, DZ D3T}T and VT = [V{,VQT,V?;]T. We propose to
apply MSD at each iteration according to the following framework
X*+3 = arg m)én£2(X,Ak,Vk,Dk)
[Xk+1,Ak+1, 5k+1] _ MSD(XkJr%,Ak, Sk)
D7 = D}, DIT? = DE(sH1, )i =2,3 (35)
VL = arg min Lo(XFHL AR Vv DF2)
Di+1 — D’1€+% _ AR |y

1
DI =D XM VL =03,

3

Next we consider each subproblem in detail.
1
e For X"tz subproblem, we have

min [|A*X — Vi — D} + | X = V5 = D[f + | X — Vi - Di|.

It is easy to obtain that
XFHE = (ARTAF 4+ 21) 71 ((AF)T (VY + DF) + V& + Db 4+ VE + DE).
e For X’H'l, A’“‘l, and s**1 subproblem, we apply MSD in Algorithm 1 on Xk, Ak, and s*. Then we

update D according to the support set s*t1.
e For V<1 subproblem, we equivalently divide it into three subproblems.

o For V’f“, we have

o1 K+l
min —[Vy — Y[% + EJAFIXE v, - D22

v, 2 2

It follows that 1

1
Vil = Y + AFHIxR+L _ Dk+§ _
1 M+1( 1( 1))
o For Vg“, we get

. k+1
min A[Valls + 5[X¥ — v, - Dy 7|2,
Vs 2

Its solution is \
1
ViT! = vect-soft(X ! — DIQH"‘ ,—)-
I

o For V§+1, we obtain
. p A
min v+ (V3) + §||Xk+1 - V3 -D3 2|3
3

It is easy to calculate
1
VAT = max(XFH! — D§+2 ,0).
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e Finally, we update Lagrange multiplier according to (35). The procedure is summarized in Algorithm 4.

Algorithm 4: Pseudocode of CLSUnSAL-MSD

Input: &< RX*™ and Ye RIXN
Initialize: W =0 e R™*N A'=& V° D° & ={1,---,m}, and set k =0
Select parameters: A, u, and €
Repeat
Compute X**2 = (AF)TA* 4+ 21)-1(AMT(VF + D¥) +VE + Db 4 VE 4 DF)
Compute X1 A1 and ¢+ by Algorithm 1

1 1

Compute Dy * = Df, D; "% = Dj(s*1,1),i = 2.3
1

Compute V’f+1 = ﬁ(y + ,u(AkHX’“H o Dllc+2))

1
Vi = vect-soft(X ! — D§+2 ; %)
1
VAT = max (X" — D§+2 ,0)
1
Compute D' = D,ffg - AMTXET v
DF = D2 XML v 293
until convergence
Update W(st+1 ) = X !
Output: W

Appendix C ADSpLRU-MSD

We reconsider the ADSpLRU model
1
min 2 AX — Y[} + 712 © Xllu1 +7[X .0 + 24 (X) (36)

where ® denotes the Hadamard product, v and 7 are nonnegative regularization parameters. Then, we
rewrite (36) as

11+ 7| Vsllbx + tre(Va)
s.t. AX = V17X = VQ,X = Vg,X = V4.

1
m)én§||V1 — Y[ +7(Z o Vql

Let VI = [V VI VI V1T and define

1
L3(X,A,V,D) = §||V1 —Y||F+Z O Va1, + 7 Vsllb« + ey (Vi)

+ %(HAX — Vi —Dy2 + X = Vy—Dy|% + || X - V3 — D32 + ||X — V4, — Dy||2).
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where 4 > 0 is a penalty parameter and D” = [D], D, D3, D]]”. The framework of ADSpLRU-MSD is
proposed as below

XHkts — argm)énﬁg(X,Ak,Vk,Dk)

[XFEHL AR b1 = MSD(XF2, AF, sF)

D't? — Db DM — DE($H1 L) = 2,3,4 (37)
Vi — argm‘}nﬁ?)(XkJrl,AkJrl,V’Dk+%)

D’f“ _ D11c+% _ ARFIxEFL +V’f+1

Di! = DFTE k| Vi =23 4.

K2

In the following, we compute each subproblem in detail.
1
e For X"z subproblem, we consider

min |A*X — VY = Dj|f + X — V5 = D3|} + | X = Vi - Dj|f + | X — Vi - Di|3.

This is a least squares problem and its solution is
XMTE =((A")TA" 43171 (AT (VF + DY) + V5 + DS + Vi + D + Vi + D).

e For XkH, Akﬂ, and s**1 subproblem, we apply MSD in Algorithm 1 on Xk, Ak, and s*. Then we

update D according to the support set s**1.
e For VF+1 problem, notice that it can be divided it into four subproblems.

o For V’f""1 subproblem, we consider the optimization problem
. 1 k+1
min 2 Vi — Y[} + AN XM v - D
v, 2 2
Simple calculation gives that

1 1
VI = (Y + p(ATTXET DY),

o For Vg“ subproblem, we have
. k+3
min 7|24 © Vol 4+ ZIXF - Ve - Dy
2

and its solution is o L
VAL = soft (XM — DET2 Tzkty
1

where ZF! = [ijﬂ} with
1

k+1
- 1
(XEHT - DY R, e

j

and € being a small constant to avoid singularities.
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o For V’g“ subproblem, we obtain
. B i~rk+1 k+32
min 7| Vs« + SIX" = Vs = D3 *[|p

3

and its solution is ol
VET = SV, (X5 - D5 7)

where b = [by,- - ,b,] with

11
and o; is the i¢th singular value of Xkt D§+2.

o For V5™ subproblem, we have
. k+3
i i (V) + %44 - v, - DY
4

and clearly we obtain
1
Vi = max(X¥ - DY o).

e The Lagrange multipliers are updated according to (37). Moreover, the procedures are summarized in
Algorithm 5.

Algorithm 5: Pseudocode of ADSpLRU-MSD

Input: € RL*™ and Ye REXN

Initialize: W =0 c R™*N A’ =& V° D° " ={1,.-- ,m}, and set k=0
Select parameters: v, 7, u, and €

Repeat

Compute X2 = (A*(AF)T 4 31)~1((AF)T(VE + D¥) +VE 4+ DE + V5 + DE + Vi + DF)
Compute X1 AF! and s#+! by Algorithm 1
gt 1 :
Compute DI;+2 = D¥, D;H_"’ =DF(s#t1):), i =2,3,4.
1
Compute Vi = (Y + p(AFHIXEHL _phtay)
1
VET! = soft(XF! — D2 2zM)
1
VEHL = SVT -y, (XM - Dy T?)
1
Vi = max(X* — D2 0)
k+1
Compute D! = D] X RN GRS Vo
DF = DI XML v =934
until convergence
Update W(st1 ;) = XF+!
Output: W
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Appendix D JSpBLRU-MSD

We consider the JSpBLRU model

J
!
min o |AX — Y5+ /\; [1X;llz 2.0+ T X[, + R4 (X) (38)

where A and 7 are nonnegative regularization parameters, z; and b are nonnegative weighting coefficients,
which will be updated automatically. Rewrite (38) by some variable replacement and we obtain

J
1
min o |AX — Y5 +AD Vil o0 +7IValbe + i (Vs)

j=1

st. X =V, X =Vy,X = V.

Define
J

1 :
Li(X, AV, D) = S |AX = Y1+ 2D [Vajlla 2 +7[Valbs + e (V)
j=1

+ 21X = Vi = Dy} + |X = V2 = Dlf} + |X — V3 - Dyf[})
where g > 0 is a penalty parameter, D7 = [DT, DI D3T]T, and VI = [vT vT, V3T]T. Then the framework
of JSpBLRU-MSD is proposed as below
Xkts = arg m)énﬁ;;(X,Ak,Vk,Dk)
[Xk+1’Ak+1’ 5k+1} _ MSD(X””%,A’“, Sk)
DME — DF($H )i =1,2,3 (39)

7

VL = arg min L4(XFHT AR v DR

1
DiL = DI XM v =23,

%

In the following, we consider each step in detail.
1
e For X**2 subproblem, we have

min JIAMX — Y+ BIX - vE - DEE 4 L)X - vE - DY+ 4 X - v - DY
and it is easy to get
XEHE —((AM)TAF 4 3uD) "1 ((AF)TY 4 u(VE + DF + VE + DE 4+ VE £ DE)).
e Then we update X’H'l, Ak'H, and s*T! according to Algorithm 1. Moreover, we update DF2 with

k+1
CAR
e For VKT! subproblem, we decouple it into three subproblems.
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o For V’f+1 subproblem, we obtain

J
) k+3
e A IVillay2a + g”XkH -V, -D; 23
1
=1

Then we obtain the ith row of the jth column block of VAT as
) Lora A
(V’f;l)[’] = vect—soft((X?‘H — D’fj;é )[z], ;z”)

1 1
where Xf“ and D’sz are the jth column blocks of X*+1 and D;H_"‘, respectively,

1

k33
(X5 =Dy )]s +e

Zij =

and ¢ is a small positive constant to avoid singularities.

o For V5™ subproblem, we have
. k+3
min 7 Vo + 51X Vo - D,
2

with its solution

Vi = SVT-, (XM - DS'2),
where b = [by,- - ,b,] with b; = %ﬁ and o; is the ith singular value of X**! — D;H_%.

o For V’;H subproblem, we obtain
. M k+3
min 1z (Va) + 51X = Vs - DY
3

which follows that -
VAT — max (X! — D3+§,O).

e Finally, we update Lagrange multipliers according to (39) and summarize the procedures in Algorithm 6.
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Algorithm 6: Pseudocode of JSpBLRU-MSD

Input: &c RY*™ and Ye RIXN

Initialize: W =0 e R™*N A" =& V° D° & ={1,--- ,m}, and set k =0
Select parameters: A\, 7, u, and €

Repeat

Compute X**2 = (A")TA* 4 3,1) "1 (AMTY +u(VY + D! + VE 4+ DE + VE 4 DY)
Compute X1 A1 and $#*1 by Algorithm 1
1
Compute D72 = DF(5+11) i =1,23
i k33
Compute (V’fjl)[] = VGCt-SOft((X?Jrl - D;;? )l %Zij)
VAT = SVT -, (XF! - Dy7?)
1
V’;Jrl = max(?(“l — D§+2 ,0)
Compute D! = D,ZH_E XM Vit =1, 2,3
until convergence
Update W(s1, ;) = XFH!

Output: W
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