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Abstract. Hyperspectral images (HSIs) are always contaminated by various

mixed noise, which degrades the quality of acquired images and seriously af-
fects the subsequent extensive applications. Total variation (TV) is popular

for its capability of preserving details and promoting smoothness in HSI de-
noising. However, TV may cause over-smoothness and details loss. To tackle

the above problems, we propose a double sparsity TV and low-rank represen-

tation denoising model (LRDSTV) for the mixed noise removal. Specifically,
the double sparsity TV means fiber sparsity with sparse fibers in the gradient

domain, promoting piecewise smooth structures and properly using the spatial

information of the HSI. Moreover, we utilize the weighted nuclear norm to ex-
plore the low-rank property of mode-3 unfolding of the HSI, taking advantage

of the spectral correlation and helping maintain more details to avoid over-

smoothing. Then, the alternating direction method of multipliers (ADMM) is
applied for the optimization of the LRDSTV model. Finally, a series of denois-

ing experiments on simulated and real data sets demonstrate the effectiveness

and superiority of the proposed algorithm compared with some state-of-the-art
algorithms.

1. Introduction. Hyperspectral images (HSIs) are obtained by imaging spectrom-
eters that utilizing hundreds of continuous bands image the target area simultane-
ously. There are many researches on this special image data [14, 24, 36, 38, 39].
The plentiful spectral information of HSIs leads to various applications, e.g., agri-
culture [9], exploration of oil and gas [41], cultural relics protection [35] and food
quality control [13]. However, it will inevitably be affected by various factors during
its imaging process. As a result, HSIs are easily polluted by mixed noise, including
Gaussian noise, impulse noise, stripes, and deadlines [56]. HSIs contaminated by
mixed noise will lost a lot of useful information and cause a very serious impact on
subsequent applications. Therefore, denoising processing of HSIs is a prerequisite
for later steps and has attracted attentions of many researchers.
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Each band of HSI is treated as a grayscale image. Some straightforward denois-
ing approaches are proposed by denoising each band separately [8, 11, 31]. These
methods ignore the strong correlation of spectral bands, and so hard to achieve a sat-
isfactory result. So as to put this significant spectral correlation into consideration,
various methods have been proposed. A method based on hybrid spatial-spectral
derivative-domain wavelet shrinkage has been proposed in [34]. This method ap-
plies the dissimilarity of the signal regularity in the spatial and the spectral dimen-
sions of HSIs. In addition, a spatial-spectral adaptive sparse representation method
in [29] investigates the highly correlated spectral information and similar spatial
information via sparse representation. In [55], a spectral-spatial adaptive total
variation (TV) model has been presented to consider the spectral noise differences
and spatial information differences.

However, above methods all focus on eliminating almost only single zero-mean
Gaussian noise and neglect the complexity of noise in the real world. In addition
to Gaussian noise, many noise such as impulse noise, stripes, deadlines, and other
kinds of noise also exist in the real scenes. In order to deal with these complex
noise, the robust principal component analysis (RPCA) framework [3] has been
proposed and used in mixed noise elimination. Affected by RPCA, Zhang et al.
proposes a low-rank matrix recovery (LRMR) model [56] to remove mixed noise.
LRMR successfully explores the low-rank property of clean HSIs and obtains im-
pressive denoising performance. Then, the matrix-factorization-based methods are
gradually developed, for example, in [10], a bandwise noise model combined with
low-rank matrix factorization has been proposed, and a framelet-regularized low-
rank nonnegative matrix factorization model has been presented in [7]. Moreover,
many other researchers apply matrix factorization into their models [12,19,50,54].

The TV regularization has the ability of preserving edge information and pro-
moting piecewise smoothness. Noisy images with excessive and possibly spurious
detail have higher total variation, thus we can reduce the TV of original images
to remove the redundant details. At the same time, the important details like
the edge details are reserved. According to these features, TV is widely used in
the area of HSI denoising. Over these years, a popular structure of HSI denois-
ing is the combination of the TV regularization and a low-rank constraint. He et
al. in [20] absorb above two important aspects well, and the classic band-by-band
TV regularization has proved its denoising performance. Later in [55] and [1], the
spatial-spectral TV regularization that developing from the original one catches the
spectral smooth structure. And in [43] and [18], different low rank terms matching
with spatial-spectral TV regularization both achieve nice performance.

Being an efficient tool for depicting global correlation of HSIs, tensor decom-
position is widely used these years. There are so many methods, to name a
few, [2, 5, 16, 25, 28, 32, 52, 53], combining different forms of tensor decomposition
with other regularization, for example, nonlocal similarity with tucker decomposi-
tion, group sparse with low-rank tensor decomposition and other various terms. In
addition, we see the anisotropic spatial-spectral TV regularization combining with
tensor decomposition in [44]. Moreover, Chen et al. in [4] propose a weighted group
sparsity-regularized low-rank tensor decomposition model (LRTDGS), which tries
to employ the group sparsity information of difference images. Furthermore, many
deep learning (DL)-based algorithms have been proposed to improve the restoration
performance [30,33,40]. And all of them have the state-of-the-art denoising results.
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However, few problems still exist. The TV regularization is a double-edged sword
in dealing with HSI denoising. On the one hand, it preserves edge information and
promotes piecewise smoothness. On the other hand, excessive use of TV results
in loss of details and over-smoothing [57]. So, an emergent point is to balance
the smooth structure and the details in denoising results. An immediate way is
to express the sparsity in the gradient domain more cautiously, and utilizing the
low-rank regularization to maintain more details is the other remedy.

In this paper, we propose a double sparsity TV and low-rank representation
(LRDSTV) model for HSI mixed noise removal. The concept of double sparsity
TV is first introduced to employ fiber sparsity with sparse fibers simultaneously,
emphasizing both zero fibers in the difference images of the HSI and zero values in
the remaining non-zero fibers. Then, we utilize the weighted ℓ1-norm to enhance
the double sparsity with a self-adaptive reweighting strategy. Developing from
the original TV regularization, the weighted double sparsity TV promotes smooth
structures and properly utilizes the spatial and spectral information of the HSI.
Additionally, we use the weighted nuclear norm to depict the low-rank property
of the mode-3 unfolding of the HSI, thus exploiting the spectral correlation of the
HSI and helping maintain more details to avoid over-smoothing. We propose two
alternating direction method of multipliers (ADMM) based algorithms to solve the
proposed LRDSTV model. The denoising performance in the simulated and real
experiments all show the ability of the proposed algorithms in preserving details
and removing mixed noise.

The contribution of this paper is summarized in the following two aspects.

1) A double sparsity TV regularization is proposed for better describing the
sparse attributes of spatial difference images, which is presented as the weighted
ℓ1-norm. The double sparsity structure not only uses the fiber sparsity in the
entire differential image of the HSI, but also takes the sparsity of individual
fibers into consideration.

2) A novel LRDSTV model is proposed for the HSI mixed noise removal prob-
lem, combining the weighted double sparsity TV with low-rank representa-
tion. Two ADMM based optimization algorithms, named LRDSTV1 and
LRDSTV2, are adopted for solving the proposed model. The denoising per-
formance in the simulated and real experiments all show the ability of the
proposed algorithms in preserving details and removing mixed noise.

The rest of this paper is arranged as follows. Section 2 introduces the notations
and preliminaries at first, and the related HSI denoising knowledge are presented
then. Section 3 contains the motivation of the proposed LRDSTV model and two
ADMM based algorithms. Section 4 shows the denoising results of LRDSTV in
both simulated and real experiments. At last, Section 5 summarizes this article.

2. Notations and related work.

2.1. Problem formulation. We will introduce some notations and preliminaries
in this part. We use a lowercase letter to represent a vector, for example, w. We use
a capitalized letter to present a matrix, for instance, X. As known, tensor is a kind
of multidimensional data, which is seen as the promotion of vectors and matrices
in multidimensional spaces, and will be denoted by a capitalized calligraphic letter.
For a tensor with N dimensions, which is denoted as X ∈ RI1×I2×···×IN , and every
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element of X is xi1,i2,··· ,iN . Moreover, the mode-n unfolding of a tensor X reshapes

X into a matrix, which is presented by X(n) ∈ RIn×(I1···In−1In+1···IN ). A fiber refers
to the vector extracted from the tensor. Fixing one of the dimensions in the matrix
can get rows or columns. Similar to the matrix operation, fixing other dimensions,
and only keeping one dimension change in a tensor X can obtain a fiber. For
example, a 3-D tensor X has three kinds of fibers, and they are X (:, j, k), X (i, :, k),
and X (i, j, :). Detailed information about tensors can be found in [23]. In addition,
the Frobenius norm of a tensor X is defined as ∥X∥F = (

∑
i1,··· ,iN |xi1,··· ,iN |2)1/2.

The ℓ1-norm of X is calculated as ∥X∥1 =
∑

i1,··· ,iN |xi1,··· ,iN |. The nuclear norm

of a matrix X is defined as the sum of its singular values, i.e., ∥X∥∗ =
∑

i σi, where
σi denotes the ith singular value of X. Furthermore, the weighted nuclear norm of
matrix X is ∥X∥w,∗ =

∑
i wiσi. And we use ⟨·, ·⟩ to present the inner product.

In the real world, HSIs are easily destroyed by various mixed noise, i.e., Gaussian
noise, impulse noise, stripes, deadlines, and other noise [42, 56]. All of these noise
are generalized into two categories, Gaussian noise and sparse noise. Combining
these information, the HSI noise degradation model is generated as:

Y = X +N + S, (1)

where all variables have the same size of m× n× p, where m× n is the spatial size
of each band, and p denotes the number of bands. Y is the corrupted noisy HSI, X
presents the latent clean HSI, N denotes the Gaussian noise, and S is sparse noise
containing impulse noise, stripes, and deadlines. The goal of HSI denoising is to
obtain the clean image X from the noisy image Y.

2.2. TV-based HSI denoising. Recall that Rudin et al. introduce the TV in [37],
and its denoising capability is found effective. TV digs useful spatial and spectral
information from HSIs, which is very valid for denoising. Combining with a low-
rank constraint, the TV low-rank model properly utilizes the prior information of
HSIs in spatial and spectral domain and achieves superb denoising performance.
The general TV denoising model for HSIs is as follows

min
X ,S

F(X ) + λ1∥S∥1 + λ2∥X∥TV

s.t. ∥Y − X − S∥2F ≤ ε0,
(2)

where λ1 and λ2 are positive regularized parameters, and ε0 is the Gaussian noise
density variance, F(X ) is the low-rank term of the HSI, which has various types
but all focusing on the important low-rank property of the clean HSI, and ∥X∥TV

denotes the TV regularization of the HSI.
Developing from the original band to band TV, there are some variants, such

as spatial-spectral TV, which exploits spectral correlation in HSIs [1,55]. A widely
used one is the combination of the anisotropic TV regularization and the low-rank
constraint. Existing TV-based methods remove mixed noise efficiently, however,
the various uses of sparse information will make denoising results far different.
Besides, dealing with the balance between TV and low-rank term is still a problem.
Edges and important details reservation are suitable indexes to measure the the
effectiveness of denoising results. We will introduce the proposed method in dealing
with above points later in Section 3.



1146 JIE HUANG, KE-HAN CHEN, JIN-JU WANG AND WEN YAN

Figure 1. The illustration of double sparsity in HSIs in the gradi-
ent domain. The values of red parts are non-zero and white parts
are zero. It is clear to see the fiber sparsity in this figure, and we
choose two typical non-zero fibers to show their sparsity. Fiber
sparsity means that only a few fibers are non-zero in the difference
image.

(a) (b) (c)

(d) (e) (f)

Figure 2. Double sparsity analysis of the Washington DC Mall
data set. The first column denotes the histogram of horizontal
difference image and vertical difference image, respectively. The
second column presents the stem distribution of the 95th fiber in
horizontal difference image and the 103rd fiber in vertical difference
image, respectively. The last column shows the histogram of the
95th fiber in horizontal difference image and the 103rd fiber in
vertical difference image, respectively.

3. Double sparsity-regularized TV and low-rank representation model.

3.1. Proposed double sparsity TV model. Owing to all the discussion about
TV-based denoising algorithms, we now introduce the motivation of the proposed
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model. The first to be concerned is the TV regularization, which is usually employed
to explore the sparsity of difference images. However, TV makes final denoising
results too smooth if the sparse prior is over characterized. LRTDGS [4] applies
the weighted ℓ2,1-norm to characterize group sparsity and successfully enhances the
denoising results compared to other TV-based algorithms. Moreover, we further
explore the sparsity of difference images and note another important characteristic
on spectral domain, that is, most non-zero fibers are sparse in the gradient domain.

Based on the above discussion, we know that an HSI has double sparsity in the
gradient domain as shown in Fig. 1, i.e., fiber sparsity with sparse fibers. First
there exist a lot of zero fibers in the difference images of the HSI, what’s more, the
remaining non-zero fibers are sparse. The details to demonstrate double sparsity
will be shown in Fig. 2. As shown in Fig. 2(a) and Fig. 2(d), difference images of
the Washington DC Mall data set have a global sparse feature. The other notable
point is that there exist a lot of non-zero fibers in difference images, and these
fibers are sparse because a large amount of values in them are zero or tend to be
zero. In addition, most of the non-zero values are extremely small in these fibers.
After processing these small values (we set the value less than 10−3 to 0), the
sparsity of fibers is more clear. In the middle and the right columns in Fig. 2, we
show the sparsity of two typical fibers in horizontal and vertical difference images,
respectively. There are amounts of non-zero fibers having the same sparsity like
these two fibers. Above phenomenon proves that the difference images have a strong
fiber sparsity property. Considering the above characteristics, we try to integrate
fiber sparsity with sparse fibers and get the double sparsity model. We propose a
weighted double sparsity regularization term as

∥W ⊙DX∥1,1 =

m∑
i=1

n∑
j=1

Wh(i, j)∥DhX (i, j, :)∥1 +
m∑
i=1

n∑
j=1

Wv(i, j)∥DvX (i, j, :)∥1,

(3)

where W =

(
Wh

Wv

)
is a nonnegative weighting matrix to promote double sparsity

that will be automatically update and introduced later in the optimization process,
and D is the differential operator, which has horizontal and vertical dimensions,
i.e., Dh and Dv. They are presented as{

DhX (i, j, k) = xi,j+1,k − xi,j,k

DvX (i, j, k) = xi+1,j,k − xi,j,k.

Next, we consider about the low-rank part of our model. In [15], the weighted
nuclear norm minimization (WNNM) problem has been studied and introduced
into HSI denoising. Many researches and applications have demonstrated its per-
formance in describing the low-rank prior of HSIs, e.g., [17,21,22,43,47–49,51], and
further improvement can be found, e.g., in [6, 27]. As shown in Fig. 3, the mode-3
unfoldings of the HSIs show the most prominent low-rank attributes. According to
above analysis, the mode-3 unfolding of an HSI combined with the weighted nu-
clear norm can properly characterize the low-rank property of the clean HSI and
utilize spectral information. That’s the reason why we choose the following low-rank
regularization

∥X(3)∥w,∗.

As aforementioned, we notice that the mode-3 unfolding of the original HSI
has a stronger low-rank property and try to describe it by the weighted nuclear
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Figure 3. Low-rank property analysis of two simulated data sets.
The top row denotes the unfoldings of the simulated Indian Pines
data. The bottom row is the unfoldings of the Washington DC
Mall data.

norm. What’s more, another significant term — TV regularization is formed as
equation (3). This TV term efficiently utilizes the sparsity of spectral mode of the
HSI, i.e., the double sparsity that fuses the fiber sparsity and sparse fibers. Regular
TV-based algorithms usually smooth some details due to the overuse of sparsity on
difference images. Thus, combining with the weighted nuclear norm, we propose a
weighted double sparsity-regularized low-rank representation (LRDSTV) model for
HSI denoising as follows

min
X ,S

1

2
∥Y − X − S∥2F + λ1∥S∥1 + λ2∥W ⊙DX∥1,1 + λ3∥X(3)∥w,∗. (4)

In the above proposed model, Gaussian noise, sparse noise, the low-rank prop-
erty of HSIs, and the piecewise smooth structure are all concerned. The Frobenius
term is efficacious in elimination of the Gaussian noise. The next ℓ1-norm cap-
tures the sparse noise, i.e., the impulse noise, stripes and deadlines. Furthermore,
the weighted ℓ1-norm exploits double sparsity of difference images in spectral do-
main and helps to promote piecewise smooth structure. The final low-rank term
takes advantage of original HSI information and tries to obtain more details, which
can avoid denoising results being over smoothed. The specific optimization of the
proposed model will be introduced in the following section.

3.2. Optimization process. In the next content, we will introduce two algorithms
of the proposed model in (4). They have a small difference in the number of auxiliary
variables and calculation order of these variables.

3.2.1. LRDSTV1 optimization. The above model (4) is transformed to an equivalent
problem by introducing four auxiliary variables U , V, P, S1 as follows

min
X ,U,V,P,S,S1

1

2
∥Y − X − S∥2F + λ1∥S1∥1 + λ2∥W ⊙ V∥1,1 + λ3∥P(3)∥w,∗

s.t. X = U ,DU = V,X = P,S = S1.
(5)
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Then the nonconvex ADMM in [45] is applied to optimize equation (5). Define

A =


I −I 0
0 D 0
I 0 0
0 0 I

 ,B =


0 0 0
−I 0 0
0 −I 0
0 0 −I

 , X̂ =

 X
U
S

 ,Z =

 V
P
S1

 ,

and

f(X̂ ) =
1

2
∥Y − X − S∥2F ,

g(Z) = λ1∥S1∥1 + λ2∥W ⊙ V∥1,1 + λ3∥P(3)∥w,∗,

Then, we reformulate the model (5) into the following form

min
X̂ ,Z

f(X̂ ) + g(Z)

s.t. AX̂ + BZ = 0.
(6)

And the augmented Lagrangian function Lβ is shown

Lβ(X̂ ,Z, T ) = f(X̂ ) + g(Z) + ⟨T ,AX̂ + BZ⟩+ β

2
∥AX̂ + BZ∥2F , (7)

where β > 0 and T denotes the multipliers, i.e., T =


T1
T2
T3
T4

. Then, combining

ADMM with a reweighting strategy and we get the following framework
X̂ k+1 = argmin

X̂
Lβ(X̂ ,Zk, T k)

Zk+1 = argmin
Z

Lβ(X̂ k+1,Z, T k)

T k+1 = T k + β(AX̂ k+1 + BZk+1).

(8)

where the update details of W and w will be shown later. Additionally, the aug-
mented Lagrangian function of (24) is shown as below

Lβ(X ,U ,S,V,P,S1, T )

=
1

2
∥Y − X − S∥2F + λ1∥S1∥1 + λ2∥W ⊙ V∥1,1 + λ3∥P(3)∥w,∗ +

β

2
∥X − U∥2F

+ ⟨T1,X − U⟩+ β

2
∥DU − V∥2F + ⟨T2,DU − V⟩+ β

2
∥X − P∥2F

+ ⟨T3,X − P⟩+ β

2
∥S − S1∥2F + ⟨T4,S − S1⟩ .

(9)

The equation (9) will be transformed into several subproblems. To solve the X̂
subproblem, we update each of the primal variables X , U , and S with the others
fixed, and then the Z subproblem has been decoupled solved, following multipliers
T updates. All showed up superscript k + 1 means the (k + 1)th iteration.

• X̂ subproblem
1) By collecting all parts related to X in equation (9), we get the following

optimization

X k+1 = argmin
X

1

2
∥Y − X − Sk∥2F +

β

2
∥X − Uk +

1

β
T k
1 ∥2F +

β

2
∥X − Pk +

1

β
T k
3 ∥2F .

(10)
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And its closed-form solution is

X k+1 =
1

2β + 1
(Y − Sk + β(Uk + Pk)− (T k

1 + T k
3 )). (11)

2) After processing, the U-subproblem is optimized in the following

Uk+1 = argmin
U

1

2
∥X k+1 − U +

1

β
T k
1 ∥2F +

1

2
∥DU − Vk +

1

β
T k
2 ∥2F , (12)

which is a least-squares problem, solving that and we obtain

Uk+1 =(DTD + I)−1(X k+1 +
1

β
T k
1 +DT (Vk − 1

β
T k
2 )). (13)

3) Gathering all S terms, we get

Sk+1 = argmin
S

1

2
∥Y − X k+1 − S∥2F +

β

2
∥S − Sk

1 +
1

β
T k
4 ∥2F .

And S is updated by

Sk+1 =
1

1 + β
(Y − X k+1 + βSk

1 − T k
4 ). (14)

• Z subproblem
4) According to above analysis, V-subproblem is

Vk+1 = argmin
V

λ2∥W k+1 ⊙ V∥1,1 +
β

2
∥DUk+1 − V +

1

β
T k
2 ∥2F .

This problem is solved by the soft-thresholding operator, which means that V is
updated by

Vk+1 = soft(DUk+1 +
1

β
T k
2 ,

λ2

β
W k+1), (15)

where

soft(x, τ) = sgn(x)max{|x| − τ, 0}, (16)

for x ∈ R and τ > 0. Similarly as in [21], the weighting matrix W k+1 is updated as
follows to promote the sparsity of V

W k+1(i, j) =
1

∥(DUk+1 + 1
βT

k
2 )(i, j, :)∥1 + ϵ

, (17)

where ϵ is a very small number to avoid the singularity. Then, we calculate each
fiber separately

Vk+1(i, j, :) = soft((DUk+1 +
1

β
T k
2 )(i, j, :),

λ2

β
W k+1(i, j)).

5) Extracting P terms in the augmented Lagrangian function Lβ , we get P-
subproblem as

Pk+1 = argmin
P

λ3∥P(3)∥wk+1,∗ +
β

2
∥Xk+1

(3) − P(3) +
1

β
T k
3 (3)∥

2
F .

To solve this problem, we first give some definitions. LetX = UΣV T be the singular
value decomposition (SVD) of X, and Σ is a diagonal matrix with σi being the
ith singular value of X. Define the weighted singular value thresholding operator
SV Tw,β on X as

SV Tw,β(X) = USw,β(Σ)V
T ,
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where Sw,β is the soft-thresholding operator [26] with a weighting vector w, which
is denoted

(Sw,β(Σ))(i, i) = max(σi − βwi, 0).

Thus, P is updated as

P k+1
(3) = SV T

wk+1,
λ3
β
(Xk+1

(3) +
1

β
T k
3 (3)), (18)

where each element of wk+1 is defined as wk+1
i = 1

σk+1
i +ϵ

, and σk+1
i is the ith

singular value of Xk+1
(3) + 1

βT
k
3 (3).

6) Gathering all S1 terms we have

Sk+1
1 = argmin

S1

λ1∥S1∥1 +
β

2
∥Sk+1 − S1 +

1

β
T k
4 ∥2F .

Using the soft-thresholding in (16) and S1 is updated by

Sk+1
1 = soft(Sk+1 +

1

β
T k
4 ,

λ1

β
). (19)

• Update T
7) The update rules of multipliers T1, T2, T3, and T4 are

T k+1
1 = T k

1 + β(X k+1 − Uk+1)

T k+1
2 = T k

2 + β(DUk+1 − Vk+1)

T k+1
3 = T k

3 + β(X k+1 − Pk+1)

T k+1
4 = T k

4 + β(Sk+1 − Sk+1
1 ).

(20)

Algorithm 1: LRDSTV1

Input: Noisy image Y, stopping criterion ε, parameters λ1, λ2, λ3, and β
Output: The restored HSI X
Initialize: U = S = V = P = S1 = 0, T = 0, β = 4
While not converge do

1: Update X via (11).
2: Update U via (13).
3: Update S via (14).
4: Update V via (15).
5: Update P via (18).
6: Update S1 via (19).
7: Update all Lagrange multipliers via (20).

Check the convergence condition:
∥Xk+1−Xk∥2

F

∥Xk∥2
F

≤ ε.

End While.

The above procedure solves the proposed optimization problem and the resulting
algorithm is named as LRDSTV1. Algorithm 1 presents every step of the whole
process. Inputs of LRDSTV1 are: the original noisy HSI Y ∈ Rm×n×p, regu-
larization parameters λ1, λ2, λ3, β = 4 and the stop criterion ε, which was set
to 10−4 in the whole algorithm. More details about parameter choosing will be
discussed in Section 4. Before processing the noisy image, we initialize variables
U = S = V = P = S1 = 0, and Lagrange multipliers are also started at 0.
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3.2.2. LRDSTV2 optimization. The model of the second algorithm has fewer vari-
ables to be calculated. Introducing three auxiliary variables U , V, P and we get the
second term of our model as follows

min
X ,V,U,P,S

1

2
∥Y − X − S∥2F + λ1∥S∥1 + λ2∥W ⊙ V∥1,1 + λ3∥P(3)∥w,∗

s.t. X = U ,DU = V,X = P.
(21)

Define

Ã =

 I 0 0
0 −I 0
I 0 0

 , B̃ =

 −I 0
D 0
0 −I

 , X̃ =

 X
V
S

 , Z̃ =

(
U
P

)
,

and

f̃(X̃ ) =
1

2
∥Y − X − S∥2F + λ1∥S∥1 + λ2∥W ⊙ V∥1,1,

g̃(Z̃) = λ3∥P(3)∥w,∗.

Then, we reformulate the model (21) into the following form

min
X̃ ,Z̃

f̃(X̃ ) + g̃(Z̃)

s.t. ÃX̃ + B̃Z̃ = 0.
(22)

And the augmented Lagrangian function L̃β is shown

L̃β(X̃ , Z̃, T̃ ) = f̃(X̃ ) + g̃(Z̃) + ⟨T̃ , ÃX̃ + B̃Z̃⟩+ β

2
∥ÃX̃ + B̃Z̃∥2F , (23)

where β > 0 and T̃ denotes the multipliers, i.e., T̃ =

 T̃1
T̃2
T̃3

 and the weighting

coefficients W and w will be updated by a reweighting strategy. Then according to
the nonconvex ADMM, we get the following framework

X̃ k+1 = argmin
X̃

L̃β(X̃ , Z̃k, T̃ k)

Z̃k+1 = argmin
Z̃

L̃β(X̃ k+1, Z̃, T̃ k)

T̃ k+1 = T̃ k + β(ÃX̃ k+1 + B̃Z̃k+1).

(24)

Let W = −T̃ /β. We solve each subproblem in the following. Notice that the pro-
cess of solving subproblems is similar to LRDSTV1, we therefore omit the details.

• X̃ subproblem
1) X -subproblem

X k+1 =
1

2β + 1
(Y − Sk + β(Uk +Wk

1 + Pk +Wk
3 )). (25)

2) V-subproblem

Vk+1 = soft(DUk −Wk
2 ,

λ2

β
W k+1). (26)

Similarly, we calculate each fiber separately:

Vk+1(i, j, :) = soft((DUk −Wk
2 )(i, j, :),

λ2

β
W k+1(i, j)),
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where the weighting matrix W k+1 is updated as

W k+1(i, j) =
1

∥(DUk −Wk
2 )(i, j, :)∥1 + ϵ

.

3) S-subproblem
Sk+1 = soft(Y − X k+1, λ1). (27)

• Z̃ subproblem
4) U-subproblem

Uk+1 = (DTD + I)−1(X k+1 −Wk
1 +DT (Vk+1 +Wk

2 )). (28)

5) P-subproblem

P k+1
(3) = SV T

wk+1,
λ3
β
(Xk+1

(3) −W k
3 (3)), (29)

where wk+1
i = 1

σk+1
i +ϵ

, and σk+1
i is the ith singular value of Xk+1

(3) −W k
3 (3).

• Update W
6) The update rules of multipliers W1, W2, and W3 are

Wk+1
1 = Wk

1 − (X k+1 − Uk+1)

Wk+1
2 = Wk

2 − (DUk+1 − Vk+1)

Wk+1
3 = Wk

3 − (X k+1 − Pk+1).

(30)

We have the same strategy of setting initial values as in Algorithm 1. And the
above process, summarized in Algorithm 2 below, is our second algorithm, which is
named as LRDSTV2. It is clear that LRDSTV2 has one less subproblem and one
less submultiplier than LRDSTV1.

Algorithm 2: LRDSTV2

Input: Noisy image Y, stopping criterion ε, parameters λ1, λ2, λ3, and β
Output: The restored HSI X
Initialize: V = U = P = S = 0, β = 4, W1 = W2 = W3 = 0
While not converge do

1: Update X via (25).
2: Update V via (26).
3: Update S via (27).
4: Update U via (28).
5: Update P via (29).
6: Update all Lagrange multipliers via (30).

Check the convergence condition:
∥Xk+1−Xk∥2

F

∥Xk∥2
F

≤ ε.

End While.

4. Experimental results and discussion. In this section, we present results
of experiments on both simulated and real data sets of the proposed algorithms.
To further prove the extraordinary effect of the double sparsity structure com-
bined with the low-rank term, five more popular algorithms are compared in all
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experiments. Most of them obtain impressive results, i.e., LRMR [56], the total-
variation-regularized matrix factorization (LRTV) [20], the spatial spectral total-
variation (SSTV)1 [1], the total-variation combined with low-rank tensor decompo-
sition (LRTDTV)2 [44], and LRTDGS3 [4].

All showed up parameters are manually adjusted according to the instructions in
these papers to get the optimum. Otherwise, pixel values in all bands are normalized
to [0, 1]. The following experiments are all calculated in MATLAB R2020a in a
laptop with 16G RAM.

4.1. Simulated experiments. We choose two clean HSI data sets in simulated
experiments to demonstrate the effectiveness of the proposed two algorithms. One is
the simulated Indian Pines data set4 with the size of 145 × 145 ×224. The other is
the Hyperspectral Digital Imagery Collection Experiment (HYDICE) Washington
DC Mall data with 256× 256 in spatial domain and has 191 bands. We use various
mixed noise in three different cases to verify the performance of above competitive
algorithms. The specific details of each case are as follows:

Case 1. The zero-mean Gaussian noise are added to every band, and we separate
this case into four subcases with noise variances of 0.025, 0.05, 0.075, and 0.1.

Case 2. The noise variance of zero-mean Gaussian noise in each band is different,
which is randomly selected in the range of [0, 0.2].

Case 3. Gaussian noise, impulse noise, deadline noise, and stripe noise are all added
to the clean data. Gaussian noise is just added as in case 2. Besides, we choose
to add different percentages of impulse noise in each band and the percentage is
randomly selected in the range of [0, 0.2]. Furthermore, deadlines and stripe noise
with number ranging from 3 to 10 are added randomly to 20% of all bands in both
data sets. We will compare the denoising results of the above algorithms from the
following aspects.

4.1.1. Visual comparison. For the simulated Indian Pines data set, case 3 is chosen
to demonstrate the difference among all above algorithms, and a typical band is
involved in to show the restoration effect. As shown in Fig. 4, band 12 is extracted
for the denoising results comparison. For better observation, we also enlarge some
areas in the results. It is clear to see that LRMR and SSTV are hard to eliminate all
noise, there still exists some noisy parts. LRTV, LRTDTV, LRTDGS, and LRDSTV
remove all the noise in image. However, we find difference in details which are
mainly shown as the edge difference. LRTV, LRTDTV, and LRTDGS are difficult to
preserve all the edges and details as well as the proposed algorithm. In the denoising
results of LRTV and LRTDTV, some similar parts of the simulated Indian Pines
data set are more easily to be seen as a whole part rather than separate clearly.
Comparing with the algorithms mentioned above, denoising results of LRTDGS
reflect that most of the edge information is well preserved, and only a very small
amount of edges are still blurred. However, paint-like traces appear to be attached
to the surface of some parts as shown in the denoising image. And both in Figs. 4(h)
and 4(i), we notice that edges and details are preserved well as that in original image,
moreover, each part stay at where they suppose to be and do not mix together.

1https://sites.google.com/view/hkaggarwal/publications
2http://gr.xjtu.edu.cn/web/dymeng/3
3https://sites.google.com/site/rshewei/home
4https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html

https://sites.google.com/view/hkaggarwal/publications
 http://gr.xjtu.edu.cn/web/dymeng/3
https://sites.google.com/site/rshewei/home
https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. Denoising results of above algorithms under case 3 of
the simulated Indian Pines data set, band 12 is extracted for com-
parison. (a) Original band. (b) Noisy band. (c) LRMR. (d) LRTV.
(e) SSTV. (f) LRTDTV. (g) LRTDGS. (h) LRDSTV1. (i)
LRDSTV2.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5. Denoising results of above algorithms under case 3 of
the Washington DC Mall data set, band 27 is extracted for com-
parison. (a) Original band. (b) Noisy band. (c) LRMR. (d) LRTV.
(e) SSTV. (f) LRTDTV. (g) LRTDGS. (h) LRDSTV1. (i)
LRDSTV2.

Fig. 5 shows the denoising results of all above algorithms for the Washington DC
Mall data set in case 3. LRMR and SSTV are failed in clearing all noise, so there
still remains some noisy parts in denoising results as Figs. 5(c) and (e) show. The
rest algorithms LRTV, LRTDTV, LRTDGS, and LRDSTV remove mixed noise and
achieve better visual performance. Also from the enlarged boxes in Fig. 5 we figure
out that comparing with other algorithms, our algorithms do better in preserving
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Table 1. Quantitative comparison among all algorithms under
three different cases in the simulated Indian Pines data set.

Case 1

Noise level Index Noisy LRMR LRTV SSTV LRTDTV LRTDGS LRDSTV1 LRDSTV2

0.025

PSNR 32.042 48.545 45.765 43.207 46.223 47.107 58.897 58.706

SSIM 0.7935 0.9955 0.9977 0.9871 0.9982 0.9986 0.9999 0.9999

ERGAS 58.476 8.930 14.307 20.609 13.444 12.620 2.994 3.043

SAM 0.0504 0.0060 0.0082 0.0138 0.0084 0.0066 0.0017 0.0017

0.05

PSNR 26.023 42.892 43.021 39.323 44.403 45.997 54.703 54.721

SSIM 0.5774 0.9836 0.9954 0.9652 0.9946 0.9981 0.9998 0.9998

ERGAS 116.916 17.109 17.800 29.150 15.754 13.613 4.462 4.453

SAM 0.1004 0.0118 0.0114 0.0207 0.0108 0.0080 0.0030 0.0030

0.075

PSNR 22.500 39.360 40.824 36.453 42.353 44.758 49.247 49.234

SSIM 0.4499 0.9646 0.9915 0.9314 0.9939 0.9974 0.9992 0.9992

ERGAS 175.401 25.691 22.586 38.944 19.844 15.103 8.267 8.279

SAM 0.1498 0.0176 0.0147 0.0281 0.0133 0.0093 0.0051 0.0051

0.1

PSNR 20.001 36.934 38.890 34.281 40.655 43.283 44.413 44.418

SSIM 0.3672 0.9412 0.9865 0.8905 0.9904 0.9960 0.9972 0.9972

ERGAS 233.904 33.967 27.890 49.103 23.774 17.466 14.811 14.794

SAM 0.1982 0.0232 0.0183 0.0357 0.0159 0.0110 0.0077 0.0077

Case 2

0-0.2

PSNR 22.539 38.271 39.234 35.646 41.803 43.796 45.069 45.097

SSIM 0.4440 0.9579 0.9853 0.9200 0.9935 0.9969 0.9982 0.9982

ERGAS 277.360 30.977 53.532 43.811 22.119 17.495 14.935 14.868

SAM 0.2311 0.0231 0.0385 0.0317 0.0147 0.0108 0.0096 0.0095

Case 3

PSNR 14.275 36.403 37.506 34.193 40.223 40.585 40.576 42.872

Mixed SSIM 0.2259 0.9412 0.9774 0.8960 0.9907 0.9926 0.9900 0.9975

Noise ERGAS 485.029 39.279 73.114 50.754 26.046 26.905 34.046 19.880

SAM 0.3911 0.0298 0.0587 0.0374 0.0167 0.0185 0.0244 0.0145

edges and details, which proves the effectiveness of our algorithms. The denoising
results of these two simulated experiments indicate that the proposed algorithms
preserve details better and thereby lead to better visual performance.

4.1.2. Quantitative comparison. To better demonstrate the denoising results of all
algorithms, four different objective evaluation indices are employed. Peak signal-
to-noise ratio (PSNR), structure similarity (SSIM) [46], Erreur Relative Globale
Adimensionnelle de Synthese (ERGAS) and spectral angle mapper (SAM) are cal-
culated and shown up in Tables 1 and 2. Moreover, we directly calculate the average
values of all bands in the PSNR and SSIM results. The information we can get from
these two tables is that the indices of the proposed algorithms leading all other in-
dices except some indices in case 3 of the Washington DC Mall data set. For the
simulated Indian Pines data set, when noise intensity is low, the evaluation indices
of the proposed algorithms far exceed those of the remaining algorithms. When
noise becomes more complicated and its intensity gets higher, our algorithms also
perform the best. That’s because the difference image of the simulated Indian Pines
data set has very strong spectral sparsity structure and our algorithms successfully
catch this. These sate-of-the-art algorithms all achieve good results meeting with
the Washington DC Mall data set. LRTDGS explores the group sparsity of original
difference images and get improvement over other four algorithms. Our algorithms
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Table 2. Quantitative comparison among all algorithms under six
different cases in the Washington DC Mall data set.

Case 1

Noise level Index Noisy LRMR LRTV SSTV LRTDTV LRTDGS LRDSTV1 LRDSTV2

0.025

PSNR 32.043 43.589 39.647 41.554 39.788 39.893 44.326 44.327

SSIM 0.8880 0.9916 0.9859 0.9862 0.9824 0.9839 0.9933 0.9933

ERGAS 105.584 29.142 46.537 38.407 42.215 43.811 26.258 26.265

SAM 0.1961 0.0546 0.0745 0.0763 0.0593 0.0737 0.0472 0.0473

0.05

PSNR 26.022 39.508 38.104 37.596 38.162 38.644 40.847 40.850

SSIM 0.7026 0.9808 0.9773 0.9679 0.9739 0.9781 0.9865 0.9865

ERGAS 211.159 45.031 54.038 56.695 50.931 49.617 38.518 38.513

SAM 0.3474 0.0835 0.0900 0.1085 0.0761 0.0840 0.0627 0.0628

0.075

PSNR 22.498 36.934 36.517 34.966 37.083 37.269 38.872 38.876

SSIM 0.5479 0.9676 0.9652 0.9430 0.9656 0.9692 0.9788 0.9788

ERGAS 316.854 59.660 63.250 75.972 58.200 57.536 47.831 47.817

SAM 0.4710 0.1081 0.1049 0.1395 0.0984 0.0978 0.0752 0.0752

0.1

PSNR 20.002 35.007 34.663 33.698 35.620 36.024 37.172 37.174

SSIM 0.4319 0.9512 0.9504 0.9273 0.9522 0.9598 0.9701 0.9701

ERGAS 422.304 73.621 78.528 87.647 69.055 65.732 58.206 58.200

SAM 0.5733 0.1294 0.1316 0.1538 0.1160 0.1062 0.0929 0.0929

Case 2

0-0.2

PSNR 23.086 35.823 36.406 34.985 36.885 37.355 37.165 37.709

SSIM 0.5113 0.9563 0.9708 0.9444 0.9686 0.9715 0.9738 0.9736

ERGAS 477.582 70.977 88.304 76.369 59.534 57.334 58.102 54.610

SAM 0.6242 0.1294 0.1443 0.1400 0.0938 0.0939 0.0876 0.0854

Case 3

PSNR 13.567 35.718 35.799 34.782 35.765 36.090 35.515 36.171

Mixed SSIM 0.2146 0.9611 0.9680 0.9460 0.9588 0.9638 0.9592 0.9612

Noise ERGAS 900.822 69.713 84.589 77.323 68.153 65.554 69.441 64.788

SAM 0.7800 0.1145 0.1513 0.1264 0.1003 0.0949 0.0993 0.0983

adopt the fiber sparsity of difference images and achieve the best through most
cases. In other words, our algorithms are more in line with the prior information
of the simulated hyperspectral images than other algorithms. Quantitative com-
parison indicates the superior performance of the proposed algorithms in image
denoising. It should be noted that the proposed two algorithms obtain comparable
results for cases 1 and 2 for both simulated data sets and LRDSTV2 shows better
performance under more complex noise scenarios such as in case 3.

4.1.3. Qualitative comparison. In this part, Fig. 6 shows the PSNR and SSIM values
of each band for the fourth subcase of case 1 in the simulated Indian Pines and
Washington DC Mall data sets. Fig. 6 reveals that in both data sets, PSNR and
SSIM values of most bands under both two LRDSTV algorithms surpass other
algorithms and achieve the highest. We note that the PSNR and SSIM values
of two LRDSTV algorithms are very close, their curves coincide with each other.
According to the above analysis, the simulated Indian Pines data set has more
sparsity structure in difference images and our model fits this. The Washington
DC Mall data set has more details and its difference images have apparent double
sparsity structure, LRDSTV also achieves superb results in most cases by utilizing
that in an appropriate way.
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Figure 6. PSNR and SSIM values of each band for the fourth
subcase of case 1 in two datasets: (top row) the simulated Indian

Pines data set, and (bottom row) the Washington DC Mall data set.

We further compare the spectral signatures of all algorithms. Figs. 7 and 8 show
the spectral signatures of pixel (5, 20) in the simulated Indian Pines data set and
spectral signatures of pixel (140, 30) in the Washington DC Mall data set in case 3,
respectively. From these two figures we get that LRMR, LRTV, and SSTV can
not remove the noise efficiently, LRTDTV erases some details while denoising so
its spectrum curve is smoother than others. The spectrum curves of LRTDGS and
LRDSTV are both similar to original one, and there still exists some noise owing
to the high noise intensity of these two cases, moreover, extra noise appears in few
points of the LRDTGS and LRDSTV1 curves. And the spectral signatures seem
to be protected better in LRDSTV2. In short, two algorithms of our model both
maintain spectral information well in these two cases.

In addition, we select a 10 × 10 patch centering on the two chosen pixels and
try to compare the spectral signatures difference of original simulated data sets
and all seven denoising results on this whole patch, which will better prove the
effectiveness of our algorithms. Specifically, the patch we selected is first reshaped
to a matrix, for example, for the Washington DC Mall data set, the patch of size
10× 10× 191 is reshaped to a 100× 191 matrix, then we calculate the difference of
the clean simulated patch and the denoising one to get the difference matrix. The
sparsity of the difference matrix can be utilized to measure the similarity between
denoising image and the original one. If the difference matrix is sparser, the image
restoration results would be better. In the simulated Indian Pines data set, it is clear
that Fig. 9(g) is sparser which means the denoising result of LRDSTV2 preserving
the best spectral signatures. What’s more, even the results are not clear as that in
the simulated Indian Pines data set, details tell the difference of above algorithms
in the Washington DC Mall data set. The proposed two algorithms restore the



HSI DENOISING VIA LRDSTV 1159

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(a)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(b)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(c)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(d)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(e)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(f)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(g)

0 50 100 150 200

Band Number

0

0.2

0.4

0.6

0.8

1

1.2

D
N

(h)

Figure 7. Spectrum comparison of pixel (5, 20) among different
denoising algorithms under case 3 of the simulated Indian Pines
data set. The orange and blue lines denote the original spectral
signature and its estimation, respectively. (a) Noisy. (b) LRMR.
(c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRDSTV1.
(h) LRDSTV2.
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Figure 8. Spectrum comparison of pixel (140, 30) among different
denoising algorithms under case 3 of the Washington DC Mall data
set. The orange and blue lines denote the original spectral signature
and its estimation, respectively. (a) Noisy. (b) LRMR. (c) LRTV.
(d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h)
LRDSTV2.

patch spectral signature better than the rest algorithms as expected. In this part,
we compare seven different denoising results in three aspects, which convincingly
demonstrates the excellence of the proposed model.

4.2. Real experiments. The HYDICE urban data set5 and the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) Indian Pines data set are chosen in

5http://www.tec.army.mil/hypercube

http://www.tec.army.mil/hypercube
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Figure 9. Spectral signatures difference of patch centered on pixel
(5, 20) between the original image and seven denoised ones under
case 3 of the simulated Indian Pines data set. (a) LRMR. (b)
LRTV. (c) SSTV. (d) LRTDTV. (e) LRTDGS. (f) LRDSTV1. (g)
LRDSTV2.
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Figure 10. Spectral signatures difference of patch centered on
pixel (140, 30) between the original image and seven denoised ones
under case 3 of the Washington DC Mall data set. (a) LRMR. (b)
LRTV. (c) SSTV. (d) LRTDTV. (e) LRTDGS. (f) LRDSTV1. (g)
LRDSTV2.

our real experiments part. All pixel values have been normalized to [0, 1] before
image processing.

4.2.1. HYDICE Urban data set. The HYDICE Urban data set has 307× 307 pixels
and 210 bands. This data set is corrupted by mixed noise, i.e., Gaussian noise, stripe
noise, deadlines and other unknown noise. Figs. 11 and 12 present the denoising
results of all compared algorithms for band 139 and band 207 in the Urban data set.
These two bands are typical populated bands with deadlines, stripes and Gaussian
noise in them which is observed in the two figures. Some noise still remain in
LRMR, LRTV, SSTV, and LRDSTV1 denoising results, so the mixed noise are not
be effectively removed. LRTDTV, LRTDGS, and LRDSTV2 eliminate all mixed
noise thus leading the better visual results. However, we notice that LRTDTV
and LRDSTV2 have better image contrast than LRTDGS. The left and right sides
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Comparison of all denoised images in band 139 of the
real Urban data set. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV.
(e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h) LRDSTV2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Comparison of all denoised images in band 207 of the
real Urban data set. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV.
(e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h) LRDSTV2.

of original noisy images are hard to see clearly and become darkness. Results
of LRTDTV and LRDSTV2 bright the sides and make each parts in denoising
results more easily to distinguish, what’s more, LRDSTV2 does that better in detail
performance. Some parts of the LRTDTV denoising results seem to be smoothed
which is caused by the missing details.

Horizontal mean profiles is the next being concerned in the real Urban data set,
that of band 207 in the real Urban data set is presented in Fig. 13, which can further
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Figure 13. Horizontal mean profiles of band 207 in the Urban
data set real experiment. (a) Original. (b) LRMR. (c) LRTV. (d)
SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h) LRDSTV2.

explain the denoising results. The horizontal axis represents the row number where
the vertical axis is the mean digital number value of each row. Fig. 13(a) implies
that sparse noise occur in original image, i.e., stripes and other noise. Many sudden
fluctuations appear in the original curve, which is also seen in the LRMR, LRTV,
and SSTV. Noise reduction seems not that effectively in these three algorithms,
and we are able to notice some stripes in their denoising results of band 207 in
the Urban data set. LRTDTV, LRTDGS, and two LRDSTV algorithms have more
smooth curves and achieve good enough denoising results. All types of noise are
eliminated effectively using these three algorithms. While combining Fig. 13(e)-(h)
with Fig. 12(e)-(h), one will see that LRDSTV gets a more reasonable denoising
result in the real data experiment.

4.2.2. AVIRIS Indian Pines data set. The popular AVIRIS Indian Pines data set
is also applied to compare different denoising results in the real experiment. The
size of this tensor data is 145×145×220. Deadlines, impulse noise, Gaussian noise,
water absorption and other noise have destroyed the initial HSI. As we did in the
real Urban data set, two typical bands — band 109 and band 220 were chosen
and denoising results of them could be seen in Figs. 14 and 15. Figs. 14(a) and
15(a) indicate that noise intensity are at a high level, and it is hard to get useful
information about the clean images. In the above two figures, small parts of noise
exist in the results of LRMR, LRTV and SSTV and the images are still polluted.
LRTDTV, LRTDGS and two LRDSTV algorithms remove all noise in the proper
way, but difference appears in the visual results. LRTDTV eliminates mixed noise,
however, some parts are not separated clearly. LRTDGS gets nice denoising results
while some small details are missing, what’s more, the whole image seems a little
blurry. Comparing with the other two algorithms, LRDSTV1 and LRDSTV2 keep
most of the details, preserves the edges and achieves more proper visual results.

Similar to the Urban data set, horizontal mean profiles of band 109 in the Indian
Pines data set is shown in Fig. 16. From the presented curves, we get the information
that LRMR, LRTV, and SSTV hardly remove all mixed noise. They all fail to clear
the heavy noise. The rest algorithms, i.e., LRTDTV, LRTDGS, and LRDSTV
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Comparison of all denoised images in band 109 of the
real Indian Pines data set. (a) Original. (b) LRMR. (c) LRTV. (d)
SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h) LRDSTV2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Comparison of all denoised images in band 220 of the
real Indian Pines data set. (a) Original. (b) LRMR. (c) LRTV. (d)
SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h) LRDSTV2.

get better curves with fewer fluctuations on them. Observing clearly from the
curves, LRDSTV preserves better details while LRTDTV and LRTDGS ignore some
small details. Besides, LRDSTV achieves better visual performance, which reflects
the superiority of the proposed model. Furthermore, it is shown that for the real
data experiments, LRDSTV2 offers comparable or better denoising results than
LRDSTV1, which is in line with the observation from the simulated experiments.
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Figure 16. Horizontal mean profiles of band 109 in the Indian
Pines data set real experiment. (a) Original. (b) LRMR. (c) LRTV.
(d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRDSTV1. (h)
LRDSTV2.

Figure 17. Sensitivity analysis of parameters (from left to right)
λ1, λ2, and λ3 in LRDSTV2 under case 2 of the simulated Indian
Pines data set.

4.3. Discussion. In the proposed LRDSTV model, the denoising result is affected
by some parameters, they are λ1, λ2, λ3, and the penalty parameter β. In all
simulated and real experiments, we fix the value of β to 4, and this will not change.
Regularization parameter λ1 denotes the sparsity of sparse noise, where we set it
as λ1 = c/

√
mn. When the sparse noise level becomes different, the value of c will

be set synchronously to guarantee the removal of it. In different cases of different
data sets, we find the denoising results are better when c varies from 15 to 150,
and that’s a relatively stable range. Parameter λ2 controls the sparsity of difference
image, and it also helps to eliminate some noise. As a result, the value of λ2 is
different and it is adjusted according to various cases. For relatively better PSNR
and SSIM values, we suggest the value of λ2 be chosen in the set {0.001, 0.005, 0.01,
0.04, 0.07, 0.1, 0.3, 0.5}. Parameter λ3 collects low rank information in noisy image,
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Table 3. Parameters for simulated experiments.

Case

LRDSTV1 (c, λ2, λ3) LRDSTV2(c, λ2, λ3)

Indian Pine Washington DC Indian Pine Washington WDC

Case 1

σ = 0.025 150, 0.01, 1 50, 0.001, 20 150, 0.01, 1 50, 0.001, 20

σ = 0.050 150, 0.07, 1 50, 0.005, 60 150, 0.07, 1 50, 0.005, 60

σ = 0.075 150, 0.30, 1 50, 0.01, 100 150, 0.30, 1 50, 0.01, 100

σ = 0.100 150, 0.50, 5 50, 0.01, 200 150, 0.50, 5 50, 0.01, 200

Case 2 17, 0.04, 15 15, 0.004, 100 17, 0.04, 15 15, 0.005, 60

Case 3 15, 0.05, 30 15, 0.008, 100 17, 0.04, 16 15, 0.005, 60

Table 4. Parameters for real experiments.

Data LRDSTV1(c, λ2, λ3) LRDSTV2 (c, λ2, λ3)

Urban 15, 0.05, 400 10, 0.005, 400

Indian Pines 15, 0.05, 30 15, 0.04, 16

which means that the higher noise intensity needs larger value of λ3 to balance the
information lost causing by too much noise. In the Indian Pines data set, which
has fewer pixels than the other simulated data set in each band, λ3 is set at a low
level. That is to say, λ3 is larger in the Washington DC Mall data set, but its value
is still in a small range.

For the sensitivity analysis of parameters, we choose case 2 of the simulated
Indian Pines data set in LRDSTV2 and that will be shown in Fig. 17. In the
first two subfigures of Fig. 17, the values of PSNR and SSIM rise at the beginning
and then come to a peak when c becomes about 17. Similarly, the resting four
subfigures have the same trend of curves which means the values of λ2 and λ3 are
about 0.04 and 15, respectively. In the following text, Table 3 lists all the suggesting
parameters concerned in the simulated experiments. We see that the parameters in
LRDSTV1 and LRDSTV2 are just the same in case 1. And their parameters are
slightly different in cases 2-3. Data in Table 3 tells the robustness of these three
parameters. Finally in Table 4, the recommended parameters for two real data sets
are displayed too.

Next, we will prove the importance of weights for the double sparsity TV in
the update of variable V in the proposed algorithms. Because of the similarity
denoising results of two LRDSTV algorithms, we take LRDSTV2 for an example.
The simulated Indian Pines data set is chosen to measure that. Two cases, as Fig. 18
shows, are involved in to test the effectiveness of weights for spectral sparsity part
in our model. Using weights on double sparsity part can better promote smooth
structure and greatly improve denoising results according to indices in Fig. 18.

Moreover, we apply both the relative change, i.e.,
∥∥X k+1 −X k

∥∥2
F
/
∥∥X k

∥∥2
F
, and

the residual error, i.e., ∥AX̂ k + BZk∥F in LRDSTV1 and ∥ÃX̃ k + B̃Z̃k∥F in
LRDSTV2, to demonstrate the convergence of our algorithms. Figs. 19 and 20
respectively show the curves of the relative change and the residual error with it-
erations in three different cases in the simulated Indian Pines data set. What we
get from these figures is that both the relative change and the residual error begin
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Figure 18. Effectiveness of weights for the double sparsity TV
in LRDSTV2 under cases 2 and 3 of the simulated Indian Pines
data set. (a) Comparison of PSNR value. (b) Comparison of SSIM
value. (c) Comparison of ERAGS value. (d) Comparison of SAM
value.
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Figure 19. Relative change
∥∥X k+1 −X k

∥∥2
F
/
∥∥X k

∥∥2
F

against it-
eration of the LRDSTV solver in the simulated Indian Pines data
set. (a)-(c) Cases 1-3 of LRDSTV1, (d)-(f) cases 1-3 of LRDSTV2.
And the case 1 denotes the fourth subcase of case 1 here.

with a sudden decrease and converges to zero as iteration increases. The above
phenomenon numerically shows the convergence of the proposed algorithms.

At last, to further demonstrate the effectiveness of the proposed algorithms,
we compare them with the state-of-the-art unsupervised DL algorithm: Stein’s
unbiased risk estimate convolutional neural network (SURE-CNN) [33]. Recall that
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Figure 20. Residual error against iteration of LRDSTV in the
simulated Indian Pines data set. (a) The fourth subcase of case 1.
(b) Case 2. (c) Case 3.

Table 5. Quantitative comparison of LRDSTV with SURE-CNN
in the Washington DC Mall data set.

Algorithm
Case 1 with σ = 0.05 Case 2

PSNR SSIM ERGAS SAM PSNR SSIM ERGAS SAM

SURE-CNN 40.638 0.9867 38.782 0.0571 37.642 0.9763 53.820 0.0766

LRDSTV1 40.847 0.9865 38.518 0.0627 37.165 0.9738 58.102 0.0876

LRDSTV2 40.850 0.9865 38.513 0.0628 37.709 0.9736 54.610 0.0854

SURE-CNN theoretically assumes the Gaussian distribution, so we adopt cases 1
(with noise level σ = 0.05) and 2 in the simulated experiments for a fair comparison.
In addition, we adopt the Washington DC Mall dataset, which has been used in [33].
SURE-CNN uses default parameter setting, except that the learning rate and the
number of iterations are set to 0.0001 and 15000, respectively, for better denoising
performance. Table 5 lists the quantitative comparison of LRDSTV and SURE-
CNN. It can be seen that SURE-CNN and LRDSTV provide comparable SSIM
and ERGAS values. LRDSTV offers slightly better PSNR values and SURE-CNN
offers better SAM values. In summary, the proposed algorithms still have theirs
own advantages when compared to the powerful DL-based algorithm.

5. Conclusion. In this paper, we have proposed a weighted double sparsity TV
and low-rank representation model for HSI mixed noise removal. The weighted
double sparsity regularization promotes smooth structure well and properly uses
the spatial information of HSIs. What’s more, the weighted nuclear norm of the
HSI mode-3 unfolding takes advantage of the spectral correlation and helps remain
important details to avoid results being over-smoothing. According to the above
model, we propose two algorithms named as LRDSTV1 and LRDSTV2. More
importantly, the combination of these two terms shows the superb denoising perfor-
mance both in the simulated and real data experiments. Specifically, we note that
compared with LRDSTV1, LRDSTV2 provides better or comparable denoising re-
sults for the considered data sets. In the future, we will consider more appropriate
regularization terms to describe the prior information of HSIs and try to utilize the
spatial and spectral correlation in a more proper way for better denoising perfor-
mance.
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