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Multidimensional Low-Rank Representation for
Sparse Hyperspectral Unmixing

Ling Wu, Jie Huang, Ming-Shuang Guo

Abstract—Hyperspectral unmixing is aimed at identifying pure
materials in hyperspectral images as well as their relative
proportions within each pixel. In light of the high similarity of
spectral signatures among neighboring pixels, a low-rank prop-
erty is proposed as a prior to enhance the abundance estimation
results. In the previous studies, however, the low-rank prior
is only reflected in the low-rank constraint on the abundance
matrix. In this letter, we present a multidimensional low-rank
model for the hyperspectral unmixing problem. We first reshape
the abundance matrix to a 3-D abundance tensor. Then we
simultaneously impose low-rank constraints on different modes
of the abundance tensor to maximize the use of latent spatial
information. Moreover, we incorporate the bilateral joint-sparse
structure and derive a new algorithm, named as multidimensional
low-rank representation based sparse unmixing. Experiments on
both synthetic and real data demonstrate the effectiveness of the
proposed algorithm.

Index Terms—Hyperspectral unmixing, abundance tensor,
multidimensional low-rank, bilateral joint-sparse.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are more detailed in
terms of spectral and spatial information than standard

images, which encourages their widespread use in different
kinds of industries [1, 2]. However, the complexity and
diversity of ground objects environment also limit the ap-
plications of the resulting HSIs. To address the problem,
hyperspectral unmixing is introduced for extracting the pure
materials (endmembers) mixed in an HSI, along with their
proportions in each pixel (abundances) [3]. The linear mixing
model (LMM) is widely used owing to its flexibility and
decent performance. Additionally, the fractional abundances
are assumed to follow the abundance nonnegative constraint
(ANC) and the abundance sum-to-one constraint (ASC) by
nature [4]. Extraction of endmembers plays a major role in
the effectiveness of conventional research. Given the complex
ground objects environment, a spectral library containing a
plethora of reference spectra is suggested as an alternative.

To enhance the unmixing capacity, some priors are in-
corporated by scholars over the past years. For a single
pixel, the size of the spectral library is much larger than the
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amount of pure materials involved in the composition, thus the
inherent sparsity is introduced. To blend the sparse structure,
Iordache et al. take the `1 norm as a convex replacement for
the `0 regularization to avoid the NP-hard problem in [5].
And the alternating direction sparse and low-rank unmixing
algorithm (ADSpLRU) proposes to use a weighted `1 norm
as an alternant [6]. Nevertheless, considering only pixelwise
regularization is hard to provide stable results, thus a joint `2,1
norm is proposed for applying to all pixels [7]. What’s more,
the joint-sparse-blocks and low-rank unmixing algorithm (JSp-
BLRU) incorporates the local sparsity in blocks vertically [8],
while the ensuing bilateral joint-sparse and low-rank unmixing
algorithm (BiJSpLRU) [9] pays considerate attention to both
the horizontal and vertical directions. As it turns out, they all
yield positive results.

As adjacent pixels possess spectral similarity, the low-
rank prior is obtained for the deep excavation of spectral
and spatial information. The sparse unmixing via variable
splitting augmented Lagrangian and total variation algorithm
(SUnSAL-TV) implements the sparse prior with the addition
of a total variation (TV) regularizer to activate the piecewise
smooth in abundance maps [10]. To maximize the prior’s
mining, JSpBLRU and BiJSpLRU both build models by a
weighted nuclear norm combined with some sort of sparse
structures. Also, the weighted nuclear norm is employed in
the weighted nonlocal low-rank tensor regularization in [11],
which imposes low rankness on the mode-3 unfolding of the
abundance matrix of the patch group tensor. Such a strategy
achieves great promotion in the unmixing process. However,
the above exploitation of low-rankness relies solely on the
abundance matrix corresponding to the unfolding of the 3-D
observed HSI along one mode.

In this article, we propose a multidimensional low-rank
model for the hyperspectral unmixing problem. We first re-
shape the abundance matrix into a 3-D abundance tensor and
then consider the low-rank property of matrices expanded
by different modes of the abundance tensor. We solve the
proposed model by a multidimensional low-rank representa-
tion (MdLRR) based sparse hyperspectral unmixing algorithm.
It is worth mentioning that experimental results listed later
demonstrate the superiority of our algorithm for hyperspectral
unmixing.

The remainder of this paper is formed as follows. We
describe the pertinent techniques used in our work in Sec-
tion 2. In Section 3, we propose the multidimensional low-
rank algorithm. Section 4 presents the experimental results on
both synthetic and real data. Finally, we draw a conclusion in
Section 5.
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Fig. 1: Singular values of mode-n unfoldings of the abundance tensor for Synthetic data 1 with SNR = 30 dB.

II. RELATED WORK

Let Y ∈ Rs×t×L represent the observed HSI with s × t
pixels and L spectral bands and Y ∈ RL×N be the mode-3
unfolding of Y with N = s× t. To maintain consistency with
traditional terminology, we use tensor notations as described
in [12]. The LMM considers

Y = AX +E, (1)
or equivalently,

Y = X ×3 A+ E, (2)

where A ∈ RL×M denotes the spectral dictionary with M
endmembers, X ∈ RM×N is the abundance matrix consisting
of abundance vectors for those pixels, X ∈ Rs×t×M is the
3-D abundance tensor, and both E and E stand for the noise.
In order to take advantage of physical information, ANC and
ASC are added and displayed as

X ≥ 0, 1TX = 1T , (3)
respectively. In fact, we relax the ASC, according to interpre-
tations in the literature [5–7].

After partitioning the abundance matrix as X =
[X1, . . . ,XS ], the JSpBLRU model is

min
X∈RM×N

+

1

2
‖Y −AX‖2F +λ

S∑
j=1

‖Xj‖Wj ,2,1 +τ‖X‖b,∗ (4)

where λ and τ are nonnegative regularization parameters,
‖Xj‖Wj ,2,1 =

∑M
i=1 wij‖X

[i]
j ‖2, X [i]

j is the ith row of the
jth block of X , W = [W1, . . . ,WS ] = [wij ] ∈ RM×S is
a nonnegative weighting matrix, S denotes the number of
blocks, ‖X‖b,∗ =

∑
i biσi(X), σi(X) is the ith singular

value of X , and b = [b1, . . . , br] is a nonnegative weighting
vector with r being the rank of X .

The bilateral joint-sparse structure is developed based on
the joint-sparse structure, which further utilizes the sparse prior
[9]. After partitioning the abundance matrices which have been
unfolded along both the vertical and horizontal directions, the
BiJSpLRU suggests utilizing the joint-sparse-block structure
in the two directions. Define

JS,W (X) =

S∑
j=1

‖(XP )j‖(W1)j ,2,1 +

S∑
j=1

‖Xj‖(W2)j ,2,1 (5)

where P serves as a permutation matrix, then we can rewrite
the BiJSpLRU unmixing model as

min
X∈RM×N

+

1

2
‖Y −AX‖2F + λJS,W (X) + τ‖X‖b,∗. (6)

Clearly, both JSpBLRU and BiJSpLRU only consider the
low-rank property of X , the mode-3 unfolding of X . In
the following, we will present a multidimensional low-rank
unmixing algorithm.

III. PROPOSED ALGORITHM

It is known that the abundance matrix X , corresponding to
the mode-3 unfolding Y of Y , has a clear low-rank property.
In fact, we observe that the mode-1 and mode-2 unfoldings
also admit the low-rank properties. For illustration, Fig. 1
shows that the three unfoldings of the abundance tensor by
different modes all exist a low-rankness property. In this vein,
we propose to impose a multidimensional low-rank regular-
ization on the abundance tensor for spectral unmixing, so we
can exploit the low-rank property of the abundance tensor at
a deeper level. More specifically, we propose simultaneously
regularizing the expansion matrices of the abundance tensor
over the three modes, and denote the regularization term as

Lb(X ) =

3∑
l=1

‖X(l)‖bl,∗ (7)

where X(l) denotes the mode-l unfolding of X and bl are
nonnegative weighting vectors, for l = 1, 2, 3. Combining
the multidimensional low-rank property and the bilateral joint-
sparse structure, we propose an unmixing model as

min
X∈RM×N

+

1

2
‖Y −AX‖2F + λJS,W (X) + τLb(X ). (8)

Now we solve the model under the alternating direction
multiplier method (ADMM) framework [13]. First, let us
introduce auxiliary variables V l and their mode-j unfoldings
Vl,(j) for l = 1, . . . , 6, j = 1, 2. For simplicity, we denote
the mode-3 unfolding of Vi as Vi. After partitioning V1 and
V2 as Vl = [Vl,1, . . . ,Vl,S ] for l = 1, 2, which is similarly to
XP and X , we equivalently have

min
X,V1,...,V6

1

2
‖Y −AX‖2F + λ

2∑
l=1

S∑
j=1

‖Vl,j‖(Wl)j ,2,1

+ τ

3∑
l=1

‖Vl+2,(l)‖bl,∗ + ιR+(V6)

s.t. XP = V1, X = Vl, l = 2, . . . , 6

(9)

where ιΩ is the indicator function of the set Ω, i.e., if x ∈
Ω, ιΩ(x) = 0, ιΩ(x) = +∞ otherwise. For a more concise
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expression, we specify

g(X,V ) =
1

2
‖Y −AX‖2F + λ

2∑
l=1

S∑
j=1

‖Vl,j‖(Wl)j ,2,1

+ τ

3∑
l=1

‖Vl+2,(l)‖bl,∗ + ιR+(V6)

(10)

and set V = [V1 V2 V3 V4 V5 V6], G = [P I I I I I],
hence we simplify the optimization problem as a compact form

min
X,V

g(X,V )

s.t. XG = V .
(11)

By assigning

Lµ(X,V ;Λ) = g(X,V ) +
µ

2
‖XG− V −Λ‖2F (12)

where µ > 0 is a penalty parameter and Λ = [Λ1, . . . ,Λ6],
we derive the ADMM framework

Xk+1 = arg min
X

Lµ(X,V k;Λk)

V k+1 = arg min
V

Lµ(Xk+1,V ;Λk)

Λk+1 = Λk − (Xk+1G− V k+1).

(13)

To make this letter self-contained, we define the vect-soft
operator and the singular value thresholding operator by

vect-softα(x) = x
max{‖x‖2 − α, 0}

max{‖x‖2 − α, 0} − α
,

SVTb,β(X) = UDiag((σ1 − βb1)+, . . . , (σr − βbr)+)V T ,
(14)

where (·)+ = max(·, 0) and X = UDiag(σ1, . . . , σr)V
T

is the SVD of X . Let ε = 10−16 be a small constant used
for avoiding singularities. Finally, we summarize the proposed
MdLRR in Algorithm 1.

Algorithm 1: Pseudocode of the MdLRR Algorithm

Input: Y , A.
Selected parameters: λ, τ , and µ.
Initialization: V 0

l , Λ0
l , l = 1, . . . , 6, and set k = 0.

Repeat:
Compute Xk+1 by
Xk+1 = (ATA+ 6µI)−1(ATY + µ((V k

1 +Λk1)P T

+
∑6
l=2(V k

l +Λkl ))).

Compute W k+1

l̃
and bk+1

l by
(W k+1

1 )ij = 1
‖((Xk+1P )j−Λk1,j)[i]‖2+ε

(W k+1
2 )ij = 1

‖(Xk+1
j −Λk2,j)[i]‖2+ε

(bk+1
l )j = 1

σj(X
k+1
(l)
−Λk

l+2,(l)
)+ε

for l = 1, 2, 3.

Compute V k+1
l by

(V k+1
1,j )[i] = vect-softλ

µ (W k+1
1 )ij

(((Xk+1P )j −Λk1,j)[i])

(V k+1
2,j )[i] = vect-softλ

µ (W k+1
2 )ij

((Xk+1
j −Λk2,j)[i])

V k+1
l+2,(l) = SVTbk+1

l , τµ
(Xk+1

(l) −Λ
k
l+2,(l)), l = 1, 2, 3

V k+1
6 = max(Xk+1 −Λk6 ,0).

Compute Λk+1
l by

Λk+1
1 = Λk1 − (X(k+1)P − V k+1

1 )

Λk+1
l = Λkl − (X(k+1) − V k+1

l ), l = 2, . . . , 6.
Until some stopping criterion is satisfied.
Output: X̂ = Xk+1.
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Fig. 2: True abundance maps for endmembers #1-#5 for
Synthetic data 1.
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Fig. 3: True abundance maps for (top row) endmembers #1-#5
and (bottom row) endmembers #6-#9 for Synthetic data 2.

IV. EXPERIMENTS

This section illustrates the efficiency of the proposed al-
gorithm on both synthetic and real data. We use the signal-
to-reconstruction error (SRE) and the root mean square error
(RMSE) as metrics to evaluate the experimental performance,
which are defined by

SRE(dB) = 10log10

‖X‖2F
‖X̂ −X‖2F

, RMSE =
1√
MN

‖X̂−X‖F ,

(15)
where we describe the real and estimated abundance matrices
with respect to N pixels via X and X̂ separately, M is
the number of endmembers. Generally, one algorithm offers
better results when the SRE is higher and the RMSE is lower.
Comparisons are conducted with several classic algorithms, in-
cluding SUnSAL-TV, ADSpLRU, JSpBLRU, BiJSpLRU. The
series of parameters are referred to as in [9] and best results
are recorded for each algorithm. Our tests are completed by
using MATLAB R2019a on a desktop with 3.60 GHz Intel
Core i9-9900K and 32 GB memory.

A. Simulated experiments
We conduct experiments on two sets of simulated data:
• Synthetic data 1: The first data cube includes 75 × 75

pixels with 240 bands per pixel. The spectral library
A ∈ R224×240 is a portion of the U.S. Geological Survey
(USGS) spectral library. According to LMM, we generate
the dataset by randomly selecting five endmembers from
A and the true abundance maps are shown in Fig. 2.
Furthermore, the true data cube is distributed by white
Gaussian i.i.d. noise with SNR = 20, 30, and 40 dB,
respectively.

• Synthetic data 2: The second data cube has 100 × 100
pixels with 99 bands per pixel. The spectral library comes
from the National Aeronautics and Space Administra-
tion Johnson Space Center Spacecraft materials Spectral
Database. For the creation of the true data cube, we ran-
domly pick nine endmembers with their true abundance
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Fig. 4: True and estimated abundance maps by different unmixing algorithms for Synthetic data 1 with SNR = 30 dB.
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Fig. 5: True and estimated abundance maps by different unmixing algorithms for Synthetic data 2 with SNR = 20 dB.
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Fig. 6: Plot of SRE (dB) against iteration by MdLRR for
Synthetic data 2.

maps shown in Fig. 3. After that, the true data cube is
contaminated by white Gaussian i.i.d. noise with the same
SNR values adopted for Synthetic data 1.

Figs. 4 and 5 show the abundance maps by different

TABLE I: SRE(dB) and RMSE values by different algorithms
at different noise levels for Synthetic data 1 and 2.

Synthetic data 1

Algorithm SNR = 20 dB SNR = 30 dB SNR = 40 dB
SRE RMSE SRE RMSE SRE RMSE

SUnSAL-TV 8.80 0.0125 14.94 0.0062 23.66 0.0023
ADSpLRU 8.09 0.0136 14.57 0.0065 32.59 0.0008
JSpBLRU 9.25 0.0119 15.64 0.0057 33.16 0.0008
BiJSpLRU 9.14 0.0121 19.39 0.0037 33.33 0.0007

MdLRR 10.90 0.0098 27.62 0.0014 45.41 0.0002
Synthetic data 2

Algorithm SNR = 20 dB SNR = 30 dB SNR = 40 dB
SRE RMSE SRE RMSE SRE RMSE

SUnSAL-TV 7.78 0.0296 13.08 0.0161 19.93 0.0073
ADSpLRU 7.49 0.0306 16.94 0.0103 26.46 0.0034
JSpBLRU 9.95 0.0230 18.74 0.0084 28.72 0.0027
BiJSpLRU 12.10 0.0180 20.13 0.0071 29.64 0.0024

MdLRR 14.17 0.0142 21.37 0.0062 29.25 0.0025
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Fig. 7: Abundance maps estimated by different unmixing algorithms for (top row) Alunite and (bottom row) Chalcedony.

algorithms for Synthetic data 1 and 2 with SNR = 30 dB and
SNR = 20 dB, respectively. As demonstrated in those figures,
it is apparent that our approach not only preserves richer
abundance information relative to the real abundance map
but also removes more noise. The convergence process of the
proposed algorithm regarding the SNR (dB) for the synthetic
data 2 is shown in Fig. 6. Table I displays the SRE and
RMSE values of different algorithms. The proposed MdLRR
algorithm provides an improvement in SRE at least more than
1 dB except for one case (Synthetic 2 with SNR = 40 dB).

B. Real-data experiments
In our experiments, we choose the real data from the

broadly used Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) Cuprite dataset, that is, the Cuprite data with
350 × 350 pixels and 188 bands. We use the USGS spectral
library to generate a spectral dictionary, and compare the
abundance maps generated by various algorithms based on
this dictionary. As discussed in [5–8], we set the parameters
of SUnSAL-TV to λ = λTV = 0.001, the parameters of
ADSpLRU, JSpBLRU, BiJSpLRU, and MdLRR are adjusted
to λ = τ = 0.001. Fig. 7 visualizes the reconstructed
abundance maps. Due to the low noise of the real data, just
subtle distinctions display in the abundance maps produced by
different algorithms. Doubtlessly, our method still performs
better in capturing the features of the real abundance map
when compared to those efficient algorithms.

V. CONCLUSION

In this paper, we propose a multidimensional low-rank
representation for the hyperspectral unmixing problem. Specif-
ically, after reshaping the abundance matrix to an abundance
tensor, we consider the low-rank property of abundance data
through the three unfoldings by different modes. Moreover,
we combine the multidimensional low-rank representation
with the bilateral joint-sparse structure to exploit spectral and
spatial information. We derive the MdLRR algorithm based on
the ADMM framework. The experimental results demonstrate
the proposed algorithm offers effective unmixing performance.
In the future, we will keep investigating the use of sparse
and low-rank priors in hyperspectral unmixing with plentiful
information maintained in the hyperspectral data.
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